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Abstract—In this paper we study the problem of finding
the shortest global path of non-holonomic vehicles given a set
of ordered waypoints. We represent the nonholonomic motion
constraints using Dubins’ model. Many approaches for this
problem piece together smooth trajectories by considering the
solution of consecutive two-point optimal trajectories, enforcing
smoothness at waypoints by requiring continuity of the vehicle
state between segments. In this paper, we extend the two point
optimal Dubins path solution to consider three consecutive
waypoints, with several variations. We use this solution in a
receding horizon approach to compute a smooth path through
the sequence of waypoints. We compare our approach to
alternative algorithms based on two- and three-point solutions,
and show the advantage of our receding horizon algorithm over
these alternatives. We also consider the problem when the set
of waypoints is specified, but not the order. For these problems,
we compute the order using an approximate traveling salesman
problem solution based on straight line distances, and then solve
for a smooth path using the receding horizon algorithm. Our
experimental results show that this is superior to alternative
approaches proposed in the literature.

I. INTRODUCTION

Cooperative control for unmanned air vehicles is often
based on a hierarchical control strategy, where the higher
level control selects and assigns activities to individual
vehicles. At the lower level of control, each vehicle must
select specific routes and sequences of activities in order to
complete their activities in minimum time, accounting for
the vehicles kinematic constraints.

When vehicles are agile and can change directions quickly
relative to the inter-activity travel times, the time between
two activities can be described approximately in terms of
the distances between the activities. The resulting sequencing
problem becomes a Traveling Salesman Problems (TSP) [2],
[3]. TSPs are specified in terms of points and distances
to travel between pairs of points. The goal of a TSP is
to find a closed path that visits each point exactly once
and incurs the least cost, consisting of the sum of the
distances along the path. Distances can be defined in different
ways, one of which is Euclidean distance leading to the
Euclidean TSP (ETSP). Exact algorithms, heuristics as well
as constant factor approximation algorithms with polynomial
time requirements are available for the ETSP, as described in
[4], [S]. However, when vehicles have significant kinematic
constraints such as limited turning radius, the paths obtained
from ETSP solutions are hard to approximate with flyable
trajectories. Thus, the ETSP solution provides poor estimates
of actual travel time and vehicle location.
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A classical model for two-dimensional motion of vehicles
with kinematic constraints is Dubins’ model [6]; we refer
to these models as Dubins vehicles. The solution of TSP
problems with Dubins vehicles (DTSP) was recently consid-
ered in [11], [12]. The presence of kinematic constraints in
Dubins vehicles implies that the distance between pairs of
nodes depends on the incoming and outgoing directions of
the trajectory through the node pair. As such, the distances
cannot be precomputed considering only the location of
the nodes. Extensions of the TSP formulation for Dubins
vehicles are possible by creating multiple nodes for each
physical waypoint representing possible discrete travel ori-
entations, but these extensions result in significantly larger
TSPs, making the real-time solution of the path planning
problem impractical.

An alternative approach for DTSP proposed in [11] is to
use a hierarchical approach: First, determine the sequence
of waypoints by solving an an approximate TSP that relaxes
the non-holonomic vehicle constraints. Second, find a path
through the sequence of points that satisfies the nonholo-
nomic kinematic constraints. In [11], this second problem is
solved by piecing together the solution of several two-point
shortest path problems with Dubins vehicles.

In this paper, we extend the approach of [11] to consider
a receding horizon approach to solving for the shortest
path through a sequence of points. We extend the classical
solution of Dubins [6] for the shortest path between two
points to the shortest path through three consecutive points
using a Dubins vehicle. We subsequently use this solution in
receding horizon algorithms to determine smooth paths for
Dubins vehicles through a sequence of points.

We compare the performance of our receding horizon
algorithms with a lower bound obtained relaxing the turn
radius constraints and with the Alternating Algorithm pro-
posed in [11]. Our experiments show that our receding
horizon algorithms yield significantly better solutions than
the alternative algorithms evaluated. We also compare our
DTSP solutions with the approach proposed in [12] on
problems where the task sequence is not specified. Our
experiments show that our proposed DTSP algorithms yield
significant shorter paths when compared to the random
direction sampling algorithm of [12].

This paper is organized as follows. In Section II we review
basic facts about Dubins’ problem, and discuss extensions
that we will use in our development. In Section III, we
discuss the problem of finding an optimal path for a Dubins
vehicle through three consecutive points, and provide char-
acterization of the optimal paths through three points with
free terminal point orientation. In Section IV, we describe



several tour planning algorithms that exploit the results
in the previous sections. Section V contains experimental
performance comparisons of the different algorithms. Section
VI contains our conclusions.

II. PROBLEM STATEMENT AND BACKGROUND

We consider a vehicle that moves at constant speed in
the plane, that can execute turns with a bound on maximum
curvature. Dubins’ model [6] for the motion of such vehicles
is described by a state vector X (t) = [z(t),y(t),0(t)]T €
R2 x S!, where (x,y) is the current position in the plane, and
6 is the orientation angle of the vehicle. Assume without loss
of generality that the absolute speed is normalized to 1, and
the maximum curvature is bounded by 1/r. The resulting
system’s dynamics are
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In this paper, we are given a sequence of waypoint positions
{(z0,¥0),---,(xN,yn)}, and an initial orientation 6 at time
0. The problem of interest is to find the optimal control ()
that generates a minimum time (shortest) path through the
ordered sequence of points while satisfying the kinematic
constraints in (1).

A. Optimal Trajectory between Two Points

Dubins’ original work [6] derived conditions that char-
acterized the optimal path between two points when both
initial and terminal orientations were specified. Subsequently,
Sussmann and Tang [7] rederived Dubins’ results as an
application of Pontryagin’s Maximum Principle. Subsequent
analyses of Dubins’ shortest path problem can be found in
[8], [10]. The main results are that the shortest path for a
Dubins vehicle between two states (referred to as a Dubins
path) must be one of six types, consisting of combinations
of straight line segments and maximum curvature arcs:

e Family CCC: types RLR and LRL
o Family CSC: types RSR, LSL, RSL, LSR

Here C denotes an arc of a circle with radius r; when this
arc turns clockwise (resp. counterclockwise), it will be an
R (resp. L) arc. S denotes a straight line segment. The
characterization reduces the problem of examining at most
only 6 possibilities for determining the shortest path.

Efficient algorithms are available for determining the
shortest path. Graphically, the algorithm starts by drawing
two maximum curvature circles that are tangential to the
initial state vector, and two maximum curvature circles that
are tangential to the terminal state vector. Dubins’ results
indicate that the optimal trajectory selects an arc on one
of the two initial circles, and connects tangentially to an
arc on one of the two terminal circles. If the separation
between the initial and end points is sufficient, this can only
be accomplished by a line segment. There are at most four
such line segments, and computation of the travel distances
is straightforward, thereby specifying the optimal path.

B. Two-point Path with Free Terminal Orientation

Consider a variation of Dubins’ shortest path problem
where the orientation at the terminal state is free. This
problem was discussed in [9]. In this case, the types of
shortest paths are reduced, because the last terminal arc is
not needed to match the terminal orientation. The problem
is to find a minimum time trajectory with objective

T
min / 1dt 2)
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subject to constraints (1) and boundary conditions

X(0)=(z0 yo do) ,x(T)=apy(T)=y; @

Let Az, Ay and Mg denote the costate variables associated
with the minimum time problem. The Hamiltonian for this
variational problem is

H(X, A u) =1+ Az cos(f) + Ay sin(0) + dou/r  (4)

Pontryagin’s Maximum Principle [1] yields necessary con-
ditions for the optimal trajectory:

Az 0
y | = 0 ®)
Ao Ag sin(6) — A, cos(6)

with boundary conditions (3) and A\g(T') = 0.

Since the Hamiltonian is linear in the control u, the
optimal controls are of two types: u* = —sign(\g) if
Ao # 0, or u* € [—1,1] if Ay = 0 in an interval. The
last condition corresponds to a singular arc, which in this
case is a straight line trajectory (v = 0) with orientation
tanf = %, and the first condition correspond to maximum
curvature arcs of radius 7.

Note the following consequence of the necessary condi-
tions: along optimal trajectories,

4
dt

d d d
which integrates to
Ao =gy — Az +C (6)

for some constants C, A, and A,. In particular, this implies
that all points along optimal trajectories at which Ay = 0 lie
on the same straight line in the plane. Such points describe
the straight line singular arcs as well as points of transition
from one maximum curvature arc to a different maximum
curvature arc, and it includes the destination point (zs,yy¢).
As in [9], this characterization yields the results that the
optimal trajectories must be one of two types:

e Family CS: types RS and LS
o Family CC,: types RL and LR, with v > 7

In particular, the final condition specifies that, when two arcs
follow back to back, the final arc must be longer than
radians. It is also straightforward to characterize the regions
where family C'C), is optimal: the terminal destination must
be inside of a maximum curvature circle tangential to the
initial position and orientation. This leads to fast algorithms
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Fig. 1.  Sample Paths with Free Terminal Orientation for 3 different
destinations

for computing the optimal trajectory given the initial state
and final position [9]. Typical sample paths are shown in 1.

III. THREE-POINT DUBINS PATHS WITH FREE TERMINAL
ORIENTATION

In this section, we analyze the problem of finding the
shortest path for a Dubins vehicle starting from initial state
(z0,Y0,00), passing the fixed intermediate point (Z,,, Ym)
and reaching the final point (s, ys). We follow the analysis
in [7], solving a minimum time problem with objective 2
and constraints (1)(3), plus the visiting constraints

z(t1) = Tm, y(t1) = ym for some t; € (0,T)  (7)

The Hamiltonian is again given by (4). Pontryagin’s Max-
imum Principle yields necessary conditions for optimality,
with the evolution of the costates as in (5). However, the
boundary conditions are more complex due to the presence
of the intermediate point constraints (7). At the terminal time
T, Ag(T) = 0. At the intermediate time ¢;, which is a free
variable,

Ae(t) = Mo (t7) + B
Ay(E) = Ay (t7) + k2
Xo(t) = Xo(t7)

=H{ty) 3
Along the optimal trajectory, the optimal control satisfies

min [H] = min [1 4 Ay cosf + A\ysin€ + Agu] =0 (9)
lull<1 ull <1

From (5), A;(t) and A,(t) are constant in the intervals
t € (0,t1) and t € (t1,T), with a jump discontinuity at ¢ as
indicated in (8). For clarity, in the subsequent development,
we denote constants A;(t;) = Az, Ay(t;7) = A, and
Ae(t5) = Ao + k1, Ay () = Ay + ko

As before, the time-varying costate Ag(t) determines the
optimal control: u*(t) = —sign(Ag) whenever g # 0.
When )¢ = 0, the optimal trajectory is a singular arc
corresponding to a straight line segment with fixed angles

satisfying tan(fy) = % if the segment is before ¢;, or

tan(61) = iﬂ“:i if the segment is after ¢;.
Following an argument similar to (6) or Lemma 2.1 of [9],

the points where A\g(t) = 0,¢ > t; must lie in a straight line
Ay + ki — Ay —ka+C =0

This line includes the terminal point (x ¢, ys) because of the
boundary condition Ag(7") = 0. Similarly, the points where
Ao(t) =0,t < t; lie on a straight line

Ay — Ay +C =0

These lines contain the points where the optimal control may
switch between the three type of optimal control: u = +1
or u = 0. We refer to these switching points as inflection
points.

We now characterize the optimal trajectories and the
corresponding optimal controls. Note that, along the optimal
trajectories, the Hamiltonian and )y are continuous at the
intermediate point (2., Ym )-

Theorem 3.1: Consider the three point Dubins vehicle
shortest path problem with free terminal point orientation.
Then, the optimal trajectory must be one of four types
cSsSCSs, ¢csCCc, CccCS or CCCC (or their shortened
version), where C' stands for a maximum curvature segment,
and S stands for a straight line segment.

Proof: Let t1,0,, denote the time and orientation of an
optimal trajectory when it crosses the midpoint (2, Ym)-
From Bellman’s principle of optimality, this optimal trajec-
tory must be a minimum-time Dubins path between states
(20,Y0,60) and (T, Ym,Om), as well as a minimum time
path from (2, Ym,0m) to (zs,ys). It is straightforward to
show that, if the initial minimum time Dubins path is of
CCC or CSC type, the costate value \g(t1) # 0 because the
last arc moves the costate away from the line where Ay = 0.
Since this costate is continuous at t;, this implies that the
final maximum curvature turn C' must continue after ¢;. By
the principle of optimality and the results of Section II-B,
the minimum time trajectory from (., Ym, 0m) to (T, yy)
is of type C'S or CC. Hence, for the full problem from time
0 to 7T, the optimal trajectory must be one of four types:
CCCC,cCcCcs,csCcs,CSCC, or degenerate versions of
these types. |

Trajectories that end in C'C' can only happen when the
midpoint and endpoint are separated by less than 2r. When
the initial condition is sufficiently separated from the last two
points, one can rule out the existence of optimal trajectories
of the form CSCC,CCCS and CCCC. The following con-
ditions are sufficient to guarantee that the optimal trajectory
is of form CSCS.

Lemma 3.1: Assume that (Zy,, Ym, Om), (€5, ys) are sep-
arated by a distance less than 2r. If the two radius r circles
tangent to the initial condition do not overlap the two radius
r circles containing both (Z.,, Ym,0m) and (zf,ys) the
midpoint and endpoint, the optimal trajectory must be of
type CSCS.

Specifically, for any path with one inflection point after



Fig. 2. Replacement of C'SCC' path with shorter C'SC'S path
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Three-point Free Terminal Orientation Problem

(Zm, Ym) (thus ending in C'C'), one can find a shorter path
that ends in C'S. The proof is algebraic and tedious in nature,
requiring enumeration of different geometric cases; instead,
we illustrate this behavior graphically in Figure 2. This figure
shows a CSCC path, where the orientation chosen at the
midpoint necessitates the C'C' ending to reach the terminal
point. The dotted path is a much shorter path that chooses
a different orientation at the midpoint, with the curvature
heading towards the terminal point.

When the waypoints are spaced greater than twice the
turning radius r of the vehicle, the shortest paths will be
of type C'SC'S. These paths have two singular arcs (straight
line trajectories), one before and one after the midpoint. For
these cases, we can provide a further characterization of the
optimal paths:

Lemma 3.2: Assume that the shortest Dubins path through
three waypoints, with an initial given orientation, is of type
CSCS. Then, on the second turn C, the midpoint (2, Ym )
bisects the turning arc.

Proof: The lemma is illustrated in Figure 3. The claim
is that a line from the midpoint (z,,, ¥, ) to the intersection
of the two straight line segments bisects the intersecting
angle. On line segments of the optimal path, we have A\p = 0,
%)\9 = 0. Solving the set of simultaneous equations, and
using the relationships in eqs. 8 yields the following:

Az = — cos by; Ay = —sinfy
Az + k1 = —cosb Ay + ko = —sinf
k1 6o + 61
22— _tan ———= 10
= oy an 5 (10)

Fig. 5.

Type ‘LSRS’ in Three-point problem

Since the Hamiltonian is continuous on the optimal arc at
(T, Ym ), We have

thi? [1+ Apcosb, + Ay sinb, + Ag(t1)u] =
u||<1

min [1 4+ (Az + k1) cos O, + (Ay + k2) sin 0, + Ao (t1)u]

llull<1

From the continuity of Ay at £;, we have

k1 cosO,, + kosind,, =0 (11
Combining eqs. 10 and 11 yields
0,+06 0, + 06
tanf,, = tan Bt =0, = fitt (12)

which establishes the Lemma by considering the comple-
mentary angles. |

The above results restrict the class of possible optimal
trajectories given a sequence of three waypoints, and pro-
vide simple characterizations of necessary conditions for
optimality. However, we have not developed a complete
characterization of all the possible geometric configura-
tions of the three waypoints and initial orientation that can
uniquely identify the optimal trajectory for any problem.
The necessary conditions require the solution of coupled
trigonometric equations, which can be done numerically, but
are hard to describe in closed form. We have been developed
an algorithm to compute the possible optimal solutions. For
instance, optimal trajectories for cases satisfying Lemma 3.1
are shown in Figures 4, 5.

IV. DUBINS TOURS

In this section, we develop algorithms for generating
complete tours through a set of waypoints under kinematic
motion constraints of (1) based on the results of the previous



sections. We assume that a simpler model has already
selected the ordering of the waypoints; such models can
be based on the solution of traveling salesman problems
that relax the kinematic motion constraints. Our goal is
to generate a near-optimal kinematic-feasible tour of the
waypoints preserving the original order.

Let A = {a1,...,a,} be an ordered set of waypoints in
a compact region @ C R? for the DTSP problem. If A is
a tour, then a; = a,. Let © = {61,...,0,} denote possible
orientations of a Dubins vehicle at a;, for = 1, ..., n. If one
specifies the sets A and ©, there is a unique optimal trajec-
tory, consisting of a sequence of two point Dubins shortest
paths. That is, the optimal trajectory between waypoint aj
with orientation 6, and waypoints aj4; with orientation
fr+1 can be obtained by solving for the Dubins shortest
path with those initial and terminal states. However, such a
trajectory will be unnecessarily long, because the orientations
02, ...,0, can be chosen as variables to minimize the tour
length. Below, we describe four alternative algorithms that
will generate better routes.

The first algorithm we discuss is the Alternating Algorithm
(AA) described in [11]. The AA algorithm starts from a
known initial position and orientation ai,6;. It proceeds
by fixing the orientation at every even-numbered waypoint
ask, k = 1,...,n/2 and its subsequent waypoint asy41 to
be aligned with a line segment pointing from agj t0 agk41.
This means that the segment (asg, asg+1) is a straight line
between the points. Furthermore, the orientations have been
specified at all waypoints, so the minimum time paths for
the remaining segments can be computed using a sequence
of two-point Dubins paths. We use the AA algorithm as a
reference for our subsequent algorithms.

An alternative approach that we propose is based on a
greedy solution, denoted the Two-point Algorithm. The basic
idea is to use our solution in subsection II-B for the shortest
Dubins path from one state (position and orientation) to
a second position, with free orientation. Since the initial
orientation is known at waypoint a;, we can solve the
problem of finding the shortest path to as. This solution will
specify a direction 65 at as. Using this direction, we extend
the path by solving for the shortest path from (az,6s) to
as, which specifies 03. The algorithm continues the iteration,
extending the path until all the waypoints have been reached.

A third approach, denoted the Three Point Algorithm,
uses the solution of the three point Dubins path with free
midpoint and terminal orientation developed in Section III.
In this algorithm, Dubins paths are computed only at every
odd point agy—1,k = 1,...,(n+ 1)/2. The solution of the
three point Dubins path from (asg—1,62;—1) through agy to
asp+1 yields orientations fg) and 6oy y1. Subsequently, we
solve another three point Dubins path from (asg41,02k+1)
to the next two waypoints, and repeat the process until we
have extended the path to cover all the waypoints. When the
number of waypoints is even, the last segment will only be
a two-point path, as in Section II-B.

The last algorithm we consider is a receding horizon
algorithm based on the three-point Dubins path solution in
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Fig. 6. Average length of tours for a Dubins vehicle generated by alterative
algorithms when waypoint order is given.

II. The basic idea of this algorithm is to use this solution
to determine only the path and orientation up to the middle
waypoint. Thus, the solution for (a1, 61), as,as is only used
to determine 5. Note that the choice of 6> will be heavily
influenced by the location of a3 in the solution of the
three-point Dubins path. Once 65 is known, the tour can
be extended by solving another three point problem starting
from (a2, 62). We refer to this algorithm as the Look-Ahead
(LA) algorithm, and it is based on receding horizon control
principles.

V. EXPERIMENTS

Each of the four algorithms highlighted in the previous
section provides an approximate solution to the optimal
tour problem with Dubins vehicles. In order to evaluate
their performance, we conducted experiments on randomly
generated sets of ordered waypoints. The waypoints were
contained in a square of 10 x 10 units, where 1 unit was
the minimum radius of curvature chosen for the Dubins
vehicle. We varied the number of waypoints from 3 to 27 in
increments of 2. For each number of waypoints, we generated
100 Monte Carlo samples and computed the average length
of the tours generated by the different algorithms. Note that
the order of the waypoints was selected randomly in these
experiments. Specifically, no attempt was made to solve
traveling salesman problems to find a good order without
kinematic constraints.

Figure 6 shows the relative performance of the different
algorithms, and also shows the sum of the lengths of the
straight line segments between the points, which serves as a
lower bound (infeasible, as kinematic turn radius constraints
are not enforced) for the average performance of the algo-
rithms. As the results show, the two algorithms based on the
use of three-point Dubins paths yield shorter tours. The LA
algorithm had the best performance in all cases, indicating
the advantage of using a receding horizon controller that can
modify current paths in anticipation of the next waypoint.

When the order of the waypoints is unknown, one must
determine the optimal order and the path through the way-
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Fig. 7. Average length of tours for a Dubins vehicle generated by alternative
algorithms when waypoint order is unknown.

points. One approach is to determine the order using a
solution to a TSP problem based on Euclidean distances,
neglecting the kinematic constraints of (1). An alternative
algorithm proposed recently, the Random Asymmetric Al-
gorithm (RAA) of [12], reverses the order of computation.
First, one selects randomly the directions for the waypoints,
and computes pairwise distances between all waypoints using
Dubins two-point paths. The result is a TSP problem for
the order which uses distances based on paths that satisfy
(1). The solution of this TSP problem then selects the
order, and consequently the paths. In [12], it is shown that,
as the number of waypoints per unit area increases, the
RAA algorithm computes better tours than the AA algorithm
using the order given by a straight-line TSP formulation.
In those experiments, the average spacing of waypoints was
significantly smaller than the turning radius of the vehicles.

We conducted experiments on a 20 x 20 grid with numbers
of waypoints from 3 to 27, corresponding to a sparser
version of the test problems in [12]. The minimum turn
radius r was 1 in these experiments. For each experiment,
we computed the order generated by the solution of a TSP
problem with straight line distances between waypoints, and
then used our algorithms to evaluate the length of tours
through these waypoints that satisfy the constraints of (1).
We also implemented the RAA algorithm, and computed the
corresponding length of the generated tour.

Figure 7 shows the average tour length of the different
algorithms versus number of waypoints visited, averaged
over 100 Monte Carlo runs where the location of the way-
points was randomly generated. It also shows the length
of the shortest path tour assuming no curvature constraints,
which serves as a lower bound. The results indicate that the
LA algorithm computes significantly shorter paths in these
experiments. Note that the average inter-waypoint distance
in the denser experiments is around 5.5, which is larger than
the experiments reported in [12].

VI. CONCLUSION

In this paper, we considered the problem of finding
shortest path tours for problems with non-holonomic vehicle

models that include a minimum turning radius constraint.
We developed extensions of the classic two-point, known
orientation shortest path problem solved by Dubins and
others, to allow for unknown terminal orientation, and for
determining the optimal path through three points, two of
which have unknown orientation. We characterized necessary
conditions for optimality of solutions, and extended these
characterizations to obtain optimal paths in these extensions.

Our extensions to the results of Dubins provide the
foundation for algorithms that can solve approximately the
problem of finding shortest path tours, by building these
tours incrementally. In particular, we developed a new re-
ceding horizon approach that uses our three-point Dubins
path solution to extend a partial path by one additional
waypoint, while incorporating knowledge of the location of
the subsequent waypoint. Our experiments show that this
receding horizon controller achieves superior performance
to alternatives proposed in the recent literature.

An interesting extension of our results is to look for
tours that visit areas instead of points. In the motivating
unmanned air vehicle application, activities can be conducted
remotely, so that a vehicle only needs to visit an area. We
are developing extensions to our results that compute shortest
tours for visiting sequences of areas.
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