The Compute-and-Forward Transform

Or Ordentlich, Uri Erez, Bobak Nazer

Tel Aviv University, Boston University

ISIT 2012

July 6, 2012
\[\frac{1}{n} \| x_\ell \|^2 \leq \text{SNR}, \quad z \sim \mathcal{N}(0, I). \]
Theorem (Ahlswede ’71, Liao ’72)

The capacity region is the set of all rate pairs \((R_1, R_2)\) satisfying:

\[
R_1 < \frac{1}{2} \log(1 + h_1^2 \text{SNR}) \quad R_2 < \frac{1}{2} \log(1 + h_2^2 \text{SNR}) \\
R_1 + R_2 < \frac{1}{2} \log(1 + \|h\|^2 \text{SNR})
\]
Joint Typicality Decoding

2^{nR_1} codewords

2^{nR_2} codewords

$2^{n(R_1+R_2)}$ codewords
Successive Cancellation

\[\frac{1}{n} \|x_\ell\|^2 \leq \text{SNR}, \quad z \sim \mathcal{N}(0, I). \]
Successive Cancellation

$$w_1 \rightarrow \mathcal{E}_1 \xrightarrow{x_1} h_1 \xrightarrow{z} y \xrightarrow{D} \hat{w}_1$$

$$w_2 \rightarrow \mathcal{E}_2 \xrightarrow{x_2} h_2 \xrightarrow{y} \hat{w}_2$$

$$\frac{1}{n} \| x_\ell \|^2 \leq \text{SNR}, \quad z \sim \mathcal{N}(0, I).$$

- Treat x_2 as noise and decode x_1, $R_1 < \frac{1}{2} \log \left(1 + \frac{h_1^2 \text{SNR}}{1 + h_2^2 \text{SNR}} \right)$.
Successive Cancellation

\[\frac{1}{n} \| x_\ell \|^2 \leq \text{SNR}, \quad z \sim \mathcal{N}(0, I). \]

- **Treat** \(x_2 \) **as noise** and decode \(x_1 \), \(R_1 < \frac{1}{2} \log \left(1 + \frac{h_1^2 \text{SNR}}{1 + h_2^2 \text{SNR}} \right) \).

- **Cancel** \(x_1 \) and decode \(x_2 \), \(R_2 < \frac{1}{2} \log \left(1 + h_2^2 \text{SNR} \right) \).
Successive Cancellation

\[\frac{1}{n} \| x_\ell \|^2 \leq \text{SNR}, \quad z \sim \mathcal{N}(0, I). \]

- Treat \(x_2 \) as noise and decode \(x_1 \), \(R_1 < \frac{1}{2} \log \left(1 + \frac{h_1^2 \text{SNR}}{1 + h_2^2 \text{SNR}} \right) \).
- Cancel \(x_1 \) and decode \(x_2 \), \(R_2 < \frac{1}{2} \log \left(1 + h_2^2 \text{SNR} \right) \).
- Switch decoding order for the other corner point.
Successive Cancellation

\[
\frac{1}{n} \|x_\ell\|^2 \leq \text{SNR}, \quad z \sim \mathcal{N}(0, I).
\]

- Treat \(x_2\) as noise and decode \(x_1\), \(R_1 < \frac{1}{2} \log \left(1 + \frac{h_1^2 \text{SNR}}{1 + h_2^2 \text{SNR}}\right)\).
- Cancel \(x_1\) and decode \(x_2\), \(R_2 < \frac{1}{2} \log (1 + h_2^2 \text{SNR})\).
- Switch decoding order for the other corner point.
- Achieves capacity when combined with time-sharing or rate-splitting (Rimoldi-Urbanke '96).
Compute-and-Forward

- Finite field messages: \(w_\ell \in \mathbb{F}_p^{k_\ell} \)
- Rates: \(R_\ell = \frac{k_\ell}{n} \log_2 p \)

- Decoder wants a linear combination of the messages with vanishing probability of error \(\lim_{n \to \infty} P(\hat{u} \neq u) = 0 \).

- Receiver uses its channel knowledge to match the equation coefficients \(a = [a_1 \ a_2]^T \) to the channel coefficients \(h = [h_1 \ h_2]^T \).
Compute-and-Forward: Effective Noise

\[y = \sum_{\ell=1}^{K} h_{\ell} x_{\ell} + z \]

\[= \sum_{\ell=1}^{K} a_{\ell} x_{\ell} + \sum_{\ell=1}^{K} (h_{\ell} - a_{\ell}) x_{\ell} + z \rightarrow a_{1}w_{1} \oplus a_{2}w_{2} \]

- How can we go between the integer combination of the real-valued codewords and the linear combination of the finite field messages?
- How do we cope with the self-noise?
- Use (dithered) nested lattice codes from *Erez-Zamir ’04.*
All users pick the same nested lattice code:
Choose messages over field $\mathbf{w}_\ell \in \mathbb{F}_q^k$:
Map w_ℓ to lattice point $t_\ell = \phi(w_\ell)$:
Transmit lattice points over the channel:

\[w_1 \rightarrow \quad \begin{array}{cccccccc}
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\end{array} \]

\[w_2 \rightarrow \quad \begin{array}{cccccccc}
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\end{array} \]

\[h = [\ 1.4 \quad 2.1 \] \]

\[a = [\ 2 \quad 3 \] \]
Transmit lattice points over the channel:

\[w_1 \rightarrow \begin{array}{c}
\cdot & \cdot & \cdot \\
\end{array} \]

\[w_2 \rightarrow \begin{array}{c}
\cdot & \cdot & \cdot \\
\end{array} \]

\[x_1 \rightarrow z \rightarrow y \]

\[h = \begin{bmatrix} 1.4 & 2.1 \end{bmatrix} \]

\[a = \begin{bmatrix} 2 & 3 \end{bmatrix} \]
Lattice codewords are scaled by channel coefficients:

\[h = \begin{bmatrix} 1.4 & 2.1 \end{bmatrix} \]

\[a = \begin{bmatrix} 2 & 3 \end{bmatrix} \]
Scaled codewords added together plus noise:

\[\mathbf{h} = \begin{bmatrix} 1.4 & 2.1 \end{bmatrix} \]

\[\mathbf{a} = \begin{bmatrix} 2 & 3 \end{bmatrix} \]
Scaled codewords added together plus noise:

\[w_1 \quad w_2 \]

\[x_1 \quad h_1 \quad z \quad x_2 \quad h_2 \]

\[h = \begin{bmatrix} 1.4 & 2.1 \end{bmatrix} \]

\[a = \begin{bmatrix} 2 & 3 \end{bmatrix} \]
Extra noise penalty for non-integer channel coefficients:

\[w_1 \rightarrow \begin{array}{cc}
\cdot & \cdot \\
\end{array} \]

\[w_2 \rightarrow \begin{array}{cc}
\cdot & \cdot \\
\end{array} \]

\[x_1 \rightarrow z \rightarrow x_2 \]

\[h_1 \rightarrow y \rightarrow h_2 \]

\[h = [1.4 \ 2.1] \]

\[a = [2 \ 3] \]

Effective noise: \(1 + \text{SNR}\| h - a \|^2 \)
Scale output by α to reduce non-integer noise penalty:

$$\alpha \mathbf{h} = [\alpha 1.4 \quad \alpha 2.1]$$

$$\mathbf{a} = [2 \quad 3]$$

Effective noise: $\alpha^2 + \text{SNR} \| \alpha \mathbf{h} - \mathbf{a} \|^2$
Scale output by α to reduce non-integer noise penalty:

$$\alpha h = \begin{bmatrix} \alpha 1.4 & \alpha 2.1 \end{bmatrix}$$

$$a = \begin{bmatrix} 2 & 3 \end{bmatrix}$$

Effective noise: $\alpha^2 + \text{SNR}\|\alpha h - a\|^2$
Decode to closest lattice point:

$$\alpha h = \begin{bmatrix} \alpha 1.4 & \alpha 2.1 \end{bmatrix}$$

$$a = \begin{bmatrix} 2 & 3 \end{bmatrix}$$

Effective noise: $$\alpha^2 + \text{SNR} \| \alpha h - a \|^2$$
Compute-and-Forward: Illustration

Compute sum of lattice points modulo the coarse lattice:

\[\alpha h = \begin{bmatrix} \alpha 1.4 & \alpha 2.1 \end{bmatrix} \]

\[a = \begin{bmatrix} 2 & 3 \end{bmatrix} \]

Effective noise: \[\alpha^2 + \text{SNR} \| \alpha h - a \|^2 \]
Map back to equation of message symbols over the field:

\[
\alpha h = \begin{bmatrix} \alpha_{1.4} & \alpha_{2.1} \end{bmatrix}
\]

\[
a = \begin{bmatrix} 2 & 3 \end{bmatrix}
\]

Effective noise: \(\alpha^2 + \text{SNR} \| \alpha h - a \|^2 \)
Theorem (Nazer-Gastpar ’11)

Achievable rate for decoding linear combination with coefficients a from a MAC with coefficients h:

$$R_{comp}(h, a) = \max_{\alpha \in \mathbb{R}} \frac{1}{2} \log^+ \left(\frac{\text{SNR}}{\alpha^2 + \text{SNR} \| \alpha h - a \|^2} \right)$$
Compute-and-Forward: Achievable Rates

Theorem (Nazer-Gastpar ’11)

Achievable rate for decoding linear combination with coefficients \(a \) from a MAC with coefficients \(h \):

\[
R_{\text{comp}}(h, a) = \frac{1}{2} \log^+ \left(\frac{1}{a^T (I + \text{SNR} \ h h^T)^{-1} a} \right)
\]
Theorem (Nazer-Gastpar ’11)

Achievable rate for decoding linear combination with coefficients a from a MAC with coefficients h:

$$R_{\text{comp}}(h, a) = \frac{1}{2} \log^+ \left(\frac{1}{a^T (I + \text{SNR} \ h h^T)^{-1} a} \right)$$

- Channel vector $h = [1 \ g]$.
- Plot maximum computation rate normalized by MAC sum capacity $\frac{1}{2} \log(1 + \|h\|^2 \text{SNR})$.
Theorem (Nazer-Gastpar ’11)

Achievable rate for decoding linear combination with coefficients a from a MAC with coefficients h:

$$R_{comp}(h, a) = \frac{1}{2} \log^+ \left(\frac{1}{a^T (I + \text{SNR} \; hh^T)^{-1} a} \right)$$

- Channel vector $h = [1 \; g]$.
- Plot maximum computation rate normalized by MAC sum capacity $\frac{1}{2} \log(1 + ||h||^2 \text{SNR})$.
Theorem (Nazer-Gastpar ’11)

Achievable rate for decoding linear combination with coefficients a from a MAC with coefficients h:

$$ R_{\text{comp}}(h, a) = \frac{1}{2} \log^+ \left(\frac{1}{a^T \left(I + \text{SNR} \ h h^T \right)^{-1} a} \right) $$

- Channel vector $h = [1 \ g]$.
- Plot maximum computation rate normalized by MAC sum capacity $\frac{1}{2} \log(1 + \|h\|^2 \text{SNR})$.
Two Linear Combinations

\[\hat{u}_1 = a_{11}w_1 \oplus a_{12}w_2 \]
\[\hat{u}_2 = a_{21}w_1 \oplus a_{22}w_2 \]

- Decode two linearly independent equations.
Two Linear Combinations

\[w_1 \rightarrow \mathcal{E}_1 \rightarrow x_1 \rightarrow h_1 \rightarrow z \]
\[w_2 \rightarrow \mathcal{E}_2 \rightarrow x_2 \rightarrow h_2 \rightarrow y \rightarrow \hat{u}_1 \rightarrow \hat{u}_2 \]

- Decode two linearly independent equations.

\[
\begin{align*}
 u_1 &= a_{11}w_1 \oplus a_{12}w_2 \\
 u_2 &= a_{21}w_1 \oplus a_{22}w_2
\end{align*}
\]

- Crossgain \(g \)

- Normalized Computation Rate

![Graph showing the relationship between crossgain and normalized computation rate]
Two Linear Combinations

\[w_1 \rightarrow E_1 \xrightarrow{x_1} h_1 \rightarrow z \]
\[w_2 \rightarrow E_2 \xrightarrow{x_2} h_2 \rightarrow y \]

\[u_1 = a_{11} w_1 \oplus a_{12} w_2 \]
\[u_2 = a_{21} w_1 \oplus a_{22} w_2 \]

- Decode two linearly independent equations.

```
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 0.2 0.4 0.6 0.8 1
```

Crossgain g

Normalized Computation Rate

1st Equation

2nd Equation
Two Linear Combinations

\[\mathbf{u}_1 = a_{11} \mathbf{w}_1 \oplus a_{12} \mathbf{w}_2 \]
\[\mathbf{u}_2 = a_{21} \mathbf{w}_1 \oplus a_{22} \mathbf{w}_2 \]

- Decode two linearly independent equations.
Two Linear Combinations

\[\mathbf{w}_1 \rightarrow \mathcal{E}_1 \xrightarrow{x_1} h_1 \rightarrow z \rightarrow y \rightarrow \mathcal{D} \xrightarrow{\mathbf{u}_1, \mathbf{u}_2} \]

\[\mathbf{w}_2 \rightarrow \mathcal{E}_2 \xrightarrow{x_2} h_2 \rightarrow y \rightarrow \mathcal{D} \xrightarrow{\mathbf{u}_1, \mathbf{u}_2} \]

Decoding two linearly independent equations.

\[\mathbf{u}_1 = a_{11} \mathbf{w}_1 \oplus a_{12} \mathbf{w}_2 \]

\[\mathbf{u}_2 = a_{21} \mathbf{w}_1 \oplus a_{22} \mathbf{w}_2 \]

![Graph showing normalized computation rate vs. crossgain g with lines for Sum Rate, 1st Equation, and 2nd Equation.](image-url)
Two Linear Combinations

\[w_1 \rightarrow E_1 \rightarrow x_1 \rightarrow h_1 \rightarrow z \rightarrow y \rightarrow D \rightarrow \hat{u}_1 \rightarrow \hat{u}_2 \]

\[w_2 \rightarrow E_2 \rightarrow x_2 \rightarrow h_2 \rightarrow y \rightarrow D \rightarrow \hat{u}_1 \rightarrow \hat{u}_2 \]

- Decode two linearly independent equations.

\[
\begin{align*}
\mathbf{u}_1 &= a_{11} \mathbf{w}_1 \oplus a_{12} \mathbf{w}_2 \\
\mathbf{u}_2 &= a_{21} \mathbf{w}_1 \oplus a_{22} \mathbf{w}_2
\end{align*}
\]
• Looks as if the sum of computation rates is nearly equal to the MAC sum capacity. Why is this happening?

• Let $F = (I + \text{SNR } hh^T)^{-1/2}$. Then, each computation rate can be written as

$$R_{\text{comp}}(h, a_k) = \frac{1}{2} \log^+ \left(\frac{1}{\|F a_k\|^2} \right).$$

• Thus, decoding the best linear combinations is the same as finding the successive minima $\lambda_k(F)$ for the lattice $\Lambda(F) = F \mathbb{Z}^K$:

$$\lambda_k(F) \triangleq \inf \left\{ r : \dim \left(\text{span} \left(\Lambda(F) \cap B(0, r) \right) \right) \geq k \right\}$$
Successive Minima
Successive Minima
Successive Minima
Successive Minima
Successive Minima
Minkowski’s Theorem on Successive Minima

Theorem (Minkowski)

Let $\Lambda(F)$ be a lattice spanned by a full-rank $K \times K$ matrix F. Its successive minima $\lambda_k(F)$ satisfy

$$\prod_{k=1}^{K} \lambda_k^2(F) \leq K^K |\det(F)|^2.$$
Minkowski’s Theorem on Successive Minima

Theorem (Minkowski)

Let $\Lambda(F)$ be a lattice spanned by a full-rank $K \times K$ matrix F. Its successive minima $\lambda_k(F)$ satisfy

$$\prod_{k=1}^{K} \lambda_k^2(F) \leq K^K |\det(F)|^2.$$

Theorem

The sum of the K best linearly independent computation rates satisfies

$$\sum_{k=1}^{K} R_{\text{comp}}(h, a_k) \geq \frac{1}{2} \log(1 + \|h\|^2 \text{SNR}) - \frac{K}{2} \log K.$$
Operational Interpretation: Multiple-Access

\[u_1 = a_{11}w_1 \oplus a_{12}w_2 \]
\[u_2 = a_{21}w_1 \oplus a_{22}w_2 \]

- Associate the rate of each equation to one message.
Operational Interpretation: Multiple-Access

\[\begin{align*}
\mathbf{w}_1 &\rightarrow \mathcal{E}_1 \quad \mathbf{x}_1 \quad h_1 \\
\mathbf{w}_2 &\rightarrow \mathcal{E}_2 \quad \mathbf{x}_2 \quad h_2
\end{align*} \]

\[z = h_1 \mathbf{x}_1 + h_2 \mathbf{x}_2 \]

\[y = z \]

\[\mathcal{D} \] (Decoding)

\[\begin{align*}
\hat{\mathbf{u}}_1 &= a_{11} \mathbf{w}_1 \oplus a_{12} \mathbf{w}_2 \\
\hat{\mathbf{u}}_2 &= a_{21} \mathbf{w}_1 \oplus a_{22} \mathbf{w}_2
\end{align*} \]

- Associate the rate of each equation to one message.

- Decoding first equation: Succeeds since \(\max(R_1, R_2) < R_{\text{comp}, 1} \).
Operational Interpretation: Multiple-Access

\[
\begin{align*}
\mathbf{w}_1 &\rightarrow \mathcal{E}_1 \xrightarrow{\mathbf{x}_1} h_1 \xrightarrow{z} y \xrightarrow{\mathcal{D}} \hat{\mathbf{u}}_1 \hat{\mathbf{u}}_2 \\
\mathbf{w}_2 &\rightarrow \mathcal{E}_2 \xrightarrow{\mathbf{x}_2} h_2 \\
\mathbf{u}_1 &= a_{11}\mathbf{w}_1 \oplus a_{12}\mathbf{w}_2 \\
\mathbf{u}_2 &= a_{21}\mathbf{w}_1 \oplus a_{22}\mathbf{w}_2
\end{align*}
\]

- Associate the rate of each equation to one message.

- Decoding first equation: Succeeds since \(\max(R_1, R_2) < R_{\text{comp,1}}\).

- Decoding second equation runs into an issue: \(R_1 > R_{\text{comp,2}}\).
After decoding the first equation, the receiver knows

$$v_1 = [a_{11}t_1 + a_{12}t_2] \mod \Lambda.$$
After decoding the first equation, the receiver knows

\[v_1 = [a_{11}t_1 + a_{12}t_2] \mod \Lambda. \]

The effective channel for the second equation is

\[s_2 = [a_{21}t_1 + a_{22}t_2 + z_{\text{effec}}(h, a_2)] \mod \Lambda. \]
(Algebraic) Successive Cancellation

- After decoding the first equation, the receiver knows
 \[\mathbf{v}_1 = [a_{11}t_1 + a_{12}t_2] \mod \Lambda. \]

- The effective channel for the second equation is
 \[\mathbf{s}_2 = [a_{21}t_1 + a_{22}t_2 + z_{\text{effec}}(h, a_2)] \mod \Lambda. \]

- Using \(\mathbf{v}_1 \) we can cancel out \(t_1 \) from \(\mathbf{s}_2 \) without changing the effective noise.
 \[\mathbf{s}_2^{SI} = [\mathbf{s}_2 - b_1 \mathbf{v}_1] \mod \Lambda \]
 \[= [(a_{22} - b_1 a_{12})t_2 + z_{\text{effec}}(h, a_2)] \mod \Lambda. \]
(Algebraic) Successive Cancellation

- After decoding the first equation, the receiver knows

\[v_1 = [a_{11}t_1 + a_{12}t_2] \mod \Lambda. \]

- The effective channel for the second equation is

\[s_2 = [a_{21}t_1 + a_{22}t_2 + z_{\text{effec}}(h, a_2)] \mod \Lambda. \]

- Using \(v_1 \) we can cancel out \(t_1 \) from \(s_2 \) without changing the effective noise.

\[
 s_2^{S1} = [s_2 - b_1v_1] \mod \Lambda \\
= [(a_{22} - b_1a_{12})t_2 + z_{\text{effec}}(h, a_2)] \mod \Lambda.
\]

- Now, the receiver can decode since \(R_2 < R_{\text{comp}, 2} \).
Multiple-Access via Computation

\[\begin{align*}
 w_1 &\rightarrow E_1 \quad x_1 \quad h_1 \quad \rightarrow \quad z \\
 w_2 &\rightarrow E_2 \quad x_2 \quad h_2 \quad \rightarrow \\
 \quad \rightarrow \\
 \quad \rightarrow \\
 \hat{w}_1 &\quad \hat{w}_2 \\
\end{align*} \]
Multiple-Access via Computation

- **Successive cancellation** (without time-sharing or rate-splitting) achieves corner points.
• **Successive cancellation** (without time-sharing or rate-splitting) achieves corner points.
Successive cancellation (without time-sharing or rate-splitting) achieves corner points.
Successive cancellation (without time-sharing or rate-splitting) achieves corner points.

The compute-and-forward transform achieves another set of points near the sum rate boundary. Often closer to the symmetric capacity.
• **Successive cancellation** (without time-sharing or rate-splitting) achieves corner points.

• The **compute-and-forward transform** achieves another set of points near the sum rate boundary. Often closer to the symmetric capacity.
• **Successive cancellation** (without time-sharing or rate-splitting) achieves corner points.

• The **compute-and-forward transform** achieves another set of points near the sum rate boundary. Often closer to the symmetric capacity.

• Achieves $1/K$ DoF for almost all channel configurations. Proved using a strengthening of a DoF bound on compute-and-forward by **Niesen-Whiting ’11**.
Each transmitter wants to send a message to a single receiver.

Possibility of interference alignment Cadambe-Jafar ’08, Motahari et al. ’09.

Approximate capacity known in some special cases: two-user Etkin-Tse-Wang ’08, many-to-one and one-to-many Bresler-Parekh-Tse ’10, cyclic Zhou-Yu ’10.
Each transmitter wants to send a message to a single receiver.

Possibility of interference alignment Cadambe-Jafar ’08, Motahari et al. ’09.

Approximate capacity known in some special cases: two-user Etkin-Tse-Wang ’08, many-to-one and one-to-many Bresler-Parekh-Tse ’10, cyclic Zhou-Yu ’10.

Focus on the special case of symmetric cross-gains.
Lattice codes can enable alignment on the signal scale.

Each receiver sees an effective two-user multiple-access channel,

\[y_k = x_k + g \sum_{\ell \neq l} x_\ell + z_k. \]

Idea: Successive cancellation. Decode and subtract interference \(\sum_{\ell \neq l} x_\ell \) before going after desired message.

Only optimal when the interference is very strong, Sridharan et al. ’08.

With the compute-and-forward transform we can approximate the sum capacity in all regimes.
Symmetric K-User Interference Channel

20dB

Sum-rate [bits/channel use] vs. g
Symmetric K-User Interference Channel

35dB

Sum-rate [bits/channel use] vs g at 35dB
Symmetric K-User Interference Channel

50dB

Sum-rate [bits/channel use] vs g for different SNR levels.
65 dB

Symmetric K-User Interference Channel

$\sum\text{-rate}[\text{bits/channel use}]$

g

10^{-2} 10^{0} 10^{2}
• **Basic Idea:** After decoding the first equation with coefficients a, we can create a new effective channel with coefficients $h + \beta a$ to make it easier to decode the second equation.
Decoding Multiple Equations: Can we do better?

- **Basic Idea:** After decoding the first equation with coefficients \mathbf{a}, we can create a new effective channel with coefficients $\mathbf{h} + \beta \mathbf{a}$ to make it easier to decode the second equation.

- From another perspective, effective noise is often correlated across linear combinations.
Decoding Multiple Equations: Can we do better?

- **Basic Idea:** After decoding the first equation with coefficients a, we can create a new effective channel with coefficients $h + \beta a$ to make it easier to decode the second equation.

- From another perspective, effective noise is often correlated across linear combinations.

- We need the real sum of codewords $\sum_{\ell} a_{\ell} x_{\ell}$.
Decoding Multiple Equations: Can we do better?

- **Basic Idea:** After decoding the first equation with coefficients a, we can create a new effective channel with coefficients $h + \beta a$ to make it easier to decode the second equation.

- From another perspective, effective noise is often correlated across linear combinations.

- We need the real sum of codewords $\sum_{\ell} a_\ell x_\ell$.

Lemma (Nazer IZS ’12)

In the original compute-and-forward framework, if you can recover the modulo sum, you can also recover the real sum (with high probability).
Successive Cancellation

• Receiver observes $y = \sum_{\ell=1}^{L} h_{\ell} x_{\ell} + z$

Successive cancellation:

• Decode x_{i}.

• Calculate $y - h_{i} x_{i}$.

• Receiver now has

$$\sum_{\ell \neq i} h_{\ell} x_{\ell} + z$$
Successive Cancellation Computation

- Receiver observes \(y = \sum_{\ell=1}^{L} h_\ell x_\ell + z \)

Successive cancellation:

- Decode \(x_i \).
- Calculate \(y - h_i x_i \).
- Receiver now has \(\sum_{\ell \neq i} h_\ell x_\ell + z \)

Successive computation:

- Decode \(\sum_{\ell=1}^{K} a_\ell x_\ell \).
- Calculate \(y + \beta \sum_{\ell=1}^{K} a_\ell x_\ell \).
- Receiver now has \(\sum_{\ell=1}^{K} (h_\ell + \beta a_\ell) x_\ell + z \)
Successive Computation

Theorem (Nazer IZS ’12)

The equations with coefficients a_1 and a_2 can be decoded if

$$R < \frac{1}{2} \log^+ \left(\left(\|a_1\|^2 - \frac{\text{SNR}(h^T a_1)^2}{1 + \text{SNR} \|h\|^2} \right)^{-1} \right)$$

$$R < \frac{1}{2} \log^+ \left(\left(\|a_2\|^2 - \frac{(a_1^T a_2)^2}{\|a_1\|^2} - \frac{\text{SNR} \left((h - \frac{a_1^T h}{\|a_1\|^2} a_1) T a_2 \right)^2}{1 + \text{SNR} \left(\|h\|^2 - \frac{(a_1^T h)^2}{\|a_1\|^2} \right)} \right)^{-1} \right)$$

- **Geometric intuition**: Remove the contribution of the first equation s_1 from the channel output y to get y_{\perp}. Create a new effective channel by summing the projections of s_1 and y_{\perp} onto the desired equation.
Multiple-Access via Successive Computation

\[w_1 \xrightarrow{\mathcal{E}_1} x_1 h_1 z \]
\[w_2 \xrightarrow{\mathcal{E}_2} x_2 h_2 y \]

\[\hat{w}_1 \xrightarrow{D} \hat{w}_2 \]

Diagram showing the multiple-access via successive computation process with variables and equations.
Multiple-Access via Successive Computation

- **Successive compute-and-forward** can often attain the exact MAC sum capacity.
Multiple-Access via Successive Computation

- **Successive compute-and-forward** can often attain the exact MAC sum capacity.

- But not always...
Successive compute-and-forward can often attain the exact MAC sum capacity.

But not always... working on a clean characterization.
Conclusions

• Connection between sum of computation rates and the multiple-access sum capacity.

• Another perspective on multiple-access communication.

• Story also holds in the MIMO case, i.e., integer-forcing.

• Useful for lattice interference alignment. Full paper on arXiv.

• Looking for more applications.