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MIMO Uplink Channel
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ŵM

...

Usual Assumptions:

• Each antenna carries an independent data stream xℓ ∈ Cn of rate R
(e.g., V-BLAST setting, cellular uplink). X = [x1 · · · xM ]T.

• Usual power constraint: ∥xℓ∥2 ≤ nSNR.

• Channel model: Y = HX+ Z

• Z is elementwise i.i.d. CN (0, 1).

• CSIR: Only the receiver knows channel realization H ∈ CM×M .



Outage Rates and Probabilities

• Throughout the talk, we will assume that H is elementwise
i.i.d. Rayleigh, remains fixed throughout the block, and is
only known at the receiver.

• Say that we have a scheme that achieves rate Rscheme(H) under
channel realization H. For a target rate R, the outage probability is

pout(R) = P
(

Rscheme(H) < R
)

and the outage rate is

Rout(ρ) = sup
{

R : pout(R) ≤ ρ
}

.



MIMO Uplink Channel: Joint ML Decoding
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Joint Maximum Likelihood Decoding:

Rjoint(H) = min
S⊆{1,...,M}

1

|S|
log det

(

I+ SNR HSH
∗
S

)

• Corresponds to the (symmetric) outage capacity.

• Naive implementation has prohibitively high complexity.

• Of course, there are many clever ways to reduce the complexity!



MIMO Uplink Channel: Zero-Forcing and Linear MMSE
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...
...

...

Zero-Forcing and Linear MMSE Receivers:

• Project the received signal, Ỹ = BY to eliminate interference
between data streams.

• After projection, single-user decoders attempt to recover the
individual data streams.

• Optimal B is the MMSE projection.



MIMO Uplink Channel: Zero-Forcing and Linear MMSE
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ỹ1
SISO Dec. x1

ỹ2
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Zero-Forcing and Linear MMSE Receivers:

• The mth SISO decoder tries to recover xm from bT
mY:

SINRLMMSE,m(H) = max
bm

SNR ∥bT
mhm∥2

1 + SNR
∑

ℓ ̸=m ∥bT
mhℓ∥2

• Rate per user:

RLMMSE(H) = min
m=1,...,M

log
(

1 + SINRLMMSE,m(H)
)



MIMO Uplink Channel: Successive Interference Cancellation
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Successive Interference Cancellation Receivers:

• Decode in order π. Cancel xπ(1), . . . ,xπ(m−1) from ỹm:

SINRSIC,π(m)(H) = max
bm

SNR ∥bT
mhπ(m)∥

2

1 + SNR
∑M

ℓ=m+1 ∥b
T
mhπ(ℓ)∥2

• Rate per user:

RV-BLAST II(H) = max
π

min
m=1,...,M

log
(

1 + SINRSIC,π(m)(H)
)



MIMO Uplink Channel: Integer-Forcing
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What if we could decode something else?

• Zero-Forcing / LMMSE: First, eliminate interference.
Then, decode individual data streams.



MIMO Uplink Channel: Integer-Forcing
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What if we could decode something else?

• Zero-Forcing / LMMSE: First, eliminate interference.
Then, decode individual data streams.

First, decode



MIMO Uplink Channel: Integer-Forcing
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ỹ2
SISO Dec.

∑

ℓ a2ℓxℓ

ỹM
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What if we could decode something else?

• Zero-Forcing / LMMSE: First, eliminate interference.
Then, decode individual data streams.

• Integer-Forcing: First, decode integer-linear combinations.



MIMO Uplink Channel: Integer-Forcing
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ỹ2
SISO Dec.

∑

ℓ a2ℓxℓ

ỹM
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What if we could decode something else?

• Zero-Forcing / LMMSE: First, eliminate interference.
Then, decode individual data streams.

• Integer-Forcing: First, decode integer-linear combinations.
Then, eliminate interference.



MIMO Uplink Channel: Integer-Forcing
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What if we could decode something else?

• Zero-Forcing / LMMSE: First, eliminate interference.
Then, decode individual data streams.

• Integer-Forcing: First, decode integer-linear combinations.
Then, eliminate interference.

• If the integer matrix A is full rank, we can successfully recover the
individual data streams.
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MIMO Uplink Channel: Integer-Forcing

Integer-Forcing Linear Receivers:

• The mth effective channel after projection is

bT
mY = bT

mHX+ bT
mZ

= aTmX+ (bT
mH− aTm)X+ bT

mZ

=
M
∑
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amℓx
T
ℓ

︸ ︷︷ ︸

Codeword

+(bT
mH− aTm)X+ bT

mZ
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• The amℓ ∈ Z[j] are Gaussian integers and the codebook should be
closed under integer-linear combinations.

• We are free to choose any full-rank integer-valued matrix A.



MIMO Uplink Channel: Integer-Forcing
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ỹ1
SISO Dec.

∑

ℓ a1ℓxℓ

ỹ2
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Integer-Forcing Linear Receivers: (Zhan-Nazer-Erez-Gastpar ’12)

• The mth SISO decoder tries to recover
∑

ℓ amℓxℓ from bT
mY:

SINRIF,m(H,A) = max
bm

SNR

∥bm∥2 + SNR∥bT
mH− aTm∥2

• Rate per user:

RIF(H) = max
A

min
m=1,...,M

log+
(

SINRIF,m(H,A)
)

• Includes linear MMSE as a special case by setting A = I.



Comparison: Outage Rates
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2 users, 2 receive antennas, Rayleigh fading, 1% outage.
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4 users, 4 receive antennas, Rayleigh fading, 1% outage.



Questions

• How can we efficiently select a good integer matrix A?

• How does the performance scale with the number of users?

• How sensitive is the performance to imperfect CSIR?

• What types of SISO encoders and decoders can we use?

• What about the downlink?

• Can we move beyond this idealized problem setting?



Finding a Good Integer Matrix

SINRIF,m(H,A) = max
bm

SNR

∥bm∥2 + SNR∥HTbm − am∥2

• Optimal bm is the MMSE projection.

• Plugging in and applying the Matrix Inversion Lemma, we get that

SINRIF,m(H,A) =
1

∥
∥
(

I+ SNR H∗H
)−1/2

am
∥
∥
2

• Finding the optimal A corresponds to finding a good lattice basis.

• This is a hard problem in general but good approximation algorithms
are known, such as the LLL algorithm.

• We are currently using a slight twist: We run LLL to get a lattice
basis. Then, we turn to the dual lattice and run LLL again,
initializing with the first basis.



Finding a Good Integer Matrix
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How does the performance scale with the number of users?
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What is the impact of imperfect CSIR?
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H+ E
• Receiver only sees H+E where E is elementwise i.i.d. CN (0,σ2).

• May result in selecting both a suboptimal integer matrix A and a
suboptimal projection matrix B.



What is the impact of imperfect CSIR?
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What kinds of SISO coding schemes can be used?
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• Underlying integer-forcing is the compute-and-forward framework,
which is used as a black box to recover linear combinations of the
messages over some finite field Fp.

• Messages are vectors over a prime-sized finite field, wℓ ∈ Fk
p.



Integer-Forcing Linear Receiver
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• Architecture is completely digital after SISO decoders.



What kinds of SISO coding schemes can be used?
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• Nazer-Gastpar ’11: Compute-and-forward achievability proofs via
nested lattice codes.

• High-dimensional nested lattice codes lead to nice log(SINR)
expressions but have high implementation complexity.

• Remember, all we actually need is that the codebook is
closed under integer-linear combinations.



What kinds of SISO coding schemes can be used?

+ Binary Linear Code

• What about QAM combined with a binary linear code?

• Issue: Real addition does not map well to addition over F2M .

[x1 + x2] mod 2M ̸= x1 ⊕ x2



What kinds of SISO coding schemes can be used?

+ Fp Linear Code

• What about p-ary QAM where p is prime combined with a
linear code over Fp?

• Real addition maps well to addition over Fp.

[x1 + x2] mod p = x1 ⊕ x2



Uncoded Integer-Forcing

Uncoded Integer-Forcing:

• Project by bm, take mod p, apply slicer.

• Correct if we recover [am1x1 + am2x2 + · · ·+ amMxM ] mod p
for all m.
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Uncoded Integer-Forcing

Uncoded Integer-Forcing:

• Project by bm, take mod p, apply slicer.

• Correct if we recover [am1x1 + am2x2 + · · ·+ amMxM ] mod p
for all m.

• Is this lattice-aided reduction? Nearly. We add the mod p.



Uncoded Integer-Forcing
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Coded Integer-Forcing

+ LDPC Code over Fp

Coded Integer-Forcing:

• Project by bm, take mod p, apply LDPC decoding algorithm.

• Correct if we recover [am1x1 + am2x2 + · · · + amMxM ] mod p
for all m.



Coded Integer-Forcing
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2 users, 2 receive antennas, Rayleigh fading
p = 13, fixed rate 1/2 log(13), regular (3, 6) LDPC code.



Codes for Compute-and-Forward
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constellations and linear codes that work well for
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Codes for Compute-and-Forward

• Lots of interesting questions on how to design low-complexity
constellations and linear codes that work well for
compute-and-forward.

• Several recent papers and...

• Krishna’s talk coming up next!



MIMO Downlink Channel
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• Capacity region is known. Requires dirty-paper coding.
Caire-Shamai ’03, Vishwanath-Jindal-Goldsmith ’04,

Viswanath-Tse ’03, Yu-Cioffi ’04, Weingarten-Steinberg-Shamai ’06.



MIMO Downlink Channel: Zero-Forcing

w1 SISO Enc.
x̃1

w2 SISO Enc.
x̃2

wM SISO Enc.
x̃M

B

x1

x2

xM

...
...

...
...

H

z1

z2

zM

y1

y2

...
yM

ŵ1
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Zero-Forcing Beamforming:

• Use beamforming matrix B to eliminate interference between data
streams.



MIMO Downlink Channel: Integer-Forcing
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ûM

...

um =
⊕

ℓ

qmℓwℓ

SISO Dec.

SISO Dec.

SISO Dec.

...

Integer-Forcing Beamforming: (Hong-Caire ’12,’13)

• Use beamforming matrix B to create an
integer-valued effective channel A.

• Decode linear combinations with qmℓ = [amℓ] mod p.



MIMO Downlink Channel: Integer-Forcing
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Integer-Forcing Beamforming: (Hong-Caire ’12,’13)

• Use beamforming matrix B to create an
integer-valued effective channel A.

• Decode linear combinations with qmℓ = [amℓ] mod p.
Pre-invert Q = [A] mod p and decode messages.



MIMO Downlink Channel: Integer-Forcing
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Integer-Forcing Beamforming: (Hong-Caire ’12,’13)

• Use beamforming matrix B to create an
integer-valued effective channel A.

• Decode linear combinations with qmℓ = [amℓ] mod p.
Pre-invert Q = [A] mod p and decode messages.

• In very recent work, we have shown that uplink-downlink duality
holds for integer-forcing. He-Nazer-Shamai ’14
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Extensions

• What can we prove about the optimality of integer-forcing?

• Zhan-Nazer-Erez-Gastpar ’12: Attains the optimal DMT
(for point-to-point MIMO with no space-time coding.)

• What about space-time coding at the transmitter?

• Ordentlich-Erez ’13: Linear dispersion codes + integer-forcing
achieves the MIMO capacity universally to within a constant gap.
Includes the optimal DMT as a special case.

• What about successive cancellation for integer-forcing?

• Ordentlich-Erez-Nazer ’13: Framework for IF-SIC. Exact optimality
if CSIT is available. Rate points tend to lie very close to the
symmetric capacity.



Key Issues Going Forward

• Low-complexity constellations and codes.

• New algorithms for finding integer matrix A.

• Synchronization.

• What if the channel realization changes over the coding
blocklength? (e.g., OFDM)

• How should we include rate adaptation?

• What does this mean for user selection?

• With Behnaam, Krishna, and students, we are working towards a
WARP implementation.

• Any others?


