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Part I

Background, Definitions, Key
Results



Learning: Data-Driven Stochastic Optimization

I Goal: stochastic optimization

minimize Lµ(w) := Eµ[`(w,Z)] =

∫
Z
`(w, z)µ(dz)

where:
I w is an element of the hypothesis space W
I Z is a random element of the instance space Z
I µ := L(Z) is unknown
I ` : W × Z→ R+ is the loss function

I Lµ(w) is the population loss of the hypothesis w w.r.t. µ

I Data-driven optimization: µ is unknown, but we have
access to training data

Z = (Z1, . . . , Zn), Zi
i.i.d.∼ µ



Learning Algorithms and their Performance

I Given: training data Z ∼ µ⊗n

I Learning algorithm: a stochastic transformation (channel)
from training data to hypotheses:

Z
PW |Z−−−→W

where W is a random element of the hypothesis space W

I Goal of learning (broadly speaking): design PW |Z , such
that the out-of-sample loss

Lµ(W ) =

∫
Z
`(W, z)µ(dz)

is suitably small (either in expectation or with high
probability)

I Caution!! Lµ(W ) is a random variable



Examples: I

1. Binary classification
I Z = X× {0, 1}
I each w ∈W corresponds to a classifier fw : X→ {0, 1}
I `(w, z) = `(w, (x, y)) = 1{y 6=fw(x)}
I Lµ(w) = Pµ[Y 6= fw(X)]

2. Regression with quadratic loss
I Z = X× Y, where Y ⊆ R
I each w ∈W corresponds to a predictor fw : X→ R
I `(w, z) = `(w, (x, y)) = (y − fw(x))2

I Lµ(w) = Eµ[(Y − fw(X))2]

These are examples of supervised learning problems: the
instance z splits into a ‘feature’ x and a ‘label’ y, and the goal
of learning is to predict Y given X when (X,Y ) ∼ µ.



Examples: II

3. Clustering
I Z is a metric space with metric ρ
I W = Zk

I `(w, z) = `((w1, . . . , wk), z) = min1≤j≤k ρ(wj , z)
p, p ≥ 1

I Lµ(w) = Eµ
[
min1≤j≤k ρ(wj , Z)p

]
4. Density estimation

I Z ⊆ Rd
I each w ∈W corresponds to a probability density fw on Rd
I `(w, z) = − log fw(z)
I Lµ(w) = Eµ[− log fw(Z)]

These are examples of unsupervised learning problems: the goal
is to find some ‘structure’ in the probability space (Z, µ).



Empirical Loss and Generalization Error

I The data-generating distribution µ is unknown; how do we
evaluate the quality of the learned hypothesis W?

I Empirical loss of a fixed hypothesis w ∈W:

LZ(w) :=
1

n

n∑
i=1

`(w,Zi)

— unbiased estimate of Lµ(w), E[LZ(w)] = Lµ(w)

I Empirical loss of W (a.k.a. resubstitution estimate)

LZ(W ) =
1

n

n∑
i=1

`(W,Zi)

can be computed from the available information (Z,W ), but is a
biased estimate: E[LZ(W )] 6= E[Lµ(W )]

Generalization error:

gen(µ, PW |Z) := E[Lµ(W )− LZ(W )]



What Does gen(µ, PW |Z) Tell Us?

Suppose there exists an optimal hypothesis wopt ∈W:

Lµ(wopt) = min
w∈W

Lµ(w)

Let us analyze the expected excess risk of PW |Z w.r.t. µ:

ex(µ, PW |Z) := E[Lµ(W )]− Lµ(wopt)

= E[Lµ(W )− LZ(W )] + E[LZ(W )]− Lµ(wopt)

= E[Lµ(W )− LZ(W )] + E[LZ(W )− LZ(wopt)]

= gen(µ, PW |Z) + E[LZ(W )− LZ(wopt)]

Thus, ex(µ, PW |Z) will be small if:

I gen(µ, PW |Z) is small (i.e., learning algo generalizes well on
average)

I the empirical risks of W and wopt are close on average



Empirical Risk Minimization and Uniform Convergence

I Empirical Risk Minimization (ERM): W ∈ arg min
w∈W

LZ(w)

I This leads to the following upper bound:

ex(µ, PERM
W |Z ) = gen(µ, PERM

W |Z ) + E
[

min
w∈W

LZ(w)− LZ(wopt)︸ ︷︷ ︸
≤0

]

≤ gen(µ, PERM
W |Z )

≤ E
[

sup
w∈W

∣∣LZ(w)− Lµ(w)
∣∣ ]

I ‘Classical’ stat. learning theory: If the induced function
class F`,W := {`(w, ·) : w ∈W} is not ‘too rich,’ then

E
[

sup
w∈W

∣∣LZ(w)− Lµ(w)
∣∣ ] ≤ C√

n
,

where C measures the complexity of F`,W and does not
depend on µ (distribution-free bound)



Uniform Convergence and Generalization

We can always bound the generalization error as

gen(µ, PW |Z) ≤ E
[

sup
w∈W

∣∣LZ(w)− Lµ(w)
∣∣ ]

... but this bound:

I relies on restricting the complexity of the hypothesis space;

I ignores the details of the interaction between the data Z
and the algo. output W ;

I in particular, may be too conservative if the algo. does not
explore the entire W due to fixed computational budget.

Learning does not require uniform convergence: One can
construct examples of (`,W), where uniform convergence does
not hold (the upper bound does not converge to 0 as n→∞),
yet learning still takes place (Shalev-Shwartz et al., 2010)



So, What Does gen(µ, PW |Z) Really Tell Us?
Let’s try one more time:

I consider generating two independent training samples

Z ∼ µ⊗n, Z ′ ∼ µ⊗m, Z ⊥⊥ Z ′

I for each i ∈ [n], replace Zi with Z ′i:

(Z1, . . . , Zi−1,Zi, Zi+1, . . . , Zn)
PW |Z−−−−→W

↓

(Z1, . . . , Zi−1,Z
′
i, Zi+1, . . . , Zn)

PW |Z−−−−→W (i)

I Since (W,Z1, . . . , Zi, . . . , Zn, Z
′
i)

d
= (W (i), Z1, . . . , Z

′
i, . . . , Zn, Zi),

gen(µ, PW |Z) =
1

n

n∑
i=1

E[`(W,Z ′i)− `(W,Zi)]

=
1

n

n∑
i=1

E[`(W,Z ′i)− `(W (i), Z ′i)]

— quantifies the sensitivity of PW |Z to local modifications of Z



Generalization as Algorithmic Stability
For any learning algo. PW |Z and any data distribution µ,

gen(µ, PW |Z) =
1

n

n∑
i=1

E[`(W,Z ′i)− `(W (i), Z ′i)]

measures stability of PW |Z w.r.t. the training sample.

Rich history, many definitions:

I first introduced by Rogers and Wagner (1978), Devroye and
Wagner (1979)

I the term ‘algorithmic stability’ first used by Kearns and Ron
(1999)

I stability goes mainstream: Bousquet and Elisseeff (2002); Poggio
et al. (2004); Rakhlin et al. (2005); Shalev-Shwartz et al. (2010)

I mushrooming: Kutin and Niyogi (2002) propose twelve (!)
different notions of stability



An Example: Uniform Stability
For any learning algo. PW |Z and any data distribution µ,

gen(µ, PW |Z) =
1

n

n∑
i=1

E[`(W,Z ′i)− `(W (i), Z ′i)]

measures stability of PW |Z w.r.t. the training sample.

Definition (Bousquet and Elisseeff): PW |Z is ε-uniformly stable if

∀i ∈ [n] : sup
z∈Z

E[`(W, z)− `(W (i), z)|Z,Z ′] ≤ ε.

If PW |Z is ε-uniformly stable, then

E[`(W,Z ′i)]−E[`(W (i), Z ′i)] = E[E[`(W,Z ′i)− `(W (i), Z ′i)|Z,Z
′]]

≤ E

[
sup
z∈Z

E[`(W, z)− `(W (i), z)|Z,Z ′]

]
≤ ε

=⇒ gen(µ, PW |Z) ≤ ε



Distributional Stability

I Uniform stability:

∀i ∈ [n] : sup
z∈Z

E[`(W, z)− `(W (i), z)|Z,Z ′] ≤ ε.

— really, a statement about the conditional distributions
PW |Z=z and PW |Z=z′ when dH(z, z′) = 1, where

dH(z, z′) :=

n∑
i=1

1{zi 6=z′i}

is the Hamming distance between z and z′

I This is very reminiscent of differential privacy :

dH(z, z′) = 1 =⇒ dist(PW |Z=z, PW |Z=z′) ≤ ε

for a suitably chosen dist(·, ·).
I We will come back to this later.



Information-Theoretic Stability

I Key idea: a learning algo. PW |Z is stable if its output W
does not depend ‘too much’ on any particular element of Z.

I Let’s make this precise:
I how do we capture dependence?
I what does ‘not too much’ mean?

I Two information-theoretic measures of dependence:

mutual information: I(Z;W ) =

n∑
i=1

I(W ;Zi|Zi−1)

erasure information: I−(Z;W ) :=
n∑
i=1

I(W ;Zi|Z−i)

Z−i := (Z1, . . . , Zi−1, Zi+1, . . . , Zn)

(Verdú and Weissman, 2008)

I To show: if I(Z;W ) or I−(Z;W ) is small, then so is
gen(µ, PW |Z).



Mutual Information vs. Erasure Information

I Note the conditioning:

mutual information: I(Z;W ) =

n∑
i=1

I(W ;Zi|Zi−1)

erasure information: I−(Z;W ) =

n∑
i=1

I(W ;Zi|Z−i)

I In general, I can be larger or smaller than I−

Lemma. I(Z;W ) ≤ I−(Z;W )

Proof: for any i ∈ [n]

I(W ;Zi|Zi−1) = I(W,Zi−1;Zi) (chain rule, independence of Zi’s)

≤ I(W ;Z−i;Zi) (data processing)

= I(W ;Zi|Z−i) (chain rule, independence of Zi’s)

then sum over i.



Information-Theoretic Stability: Definitions

Definition. A learning algorithm PW |Z is ε-stable w.r.t.
data-generating distibution µ in mutual information (resp.,
erasure information) if

I(Z;W ) ≤ nε (resp., I−(Z;W ) ≤ nε).

I Since I(Z;W ) ≤ I−(Z;W ), stability in erasure information
implies stability in mutual information.

I On the other hand, it is often easier to establish stability in
erasure information (e.g., via notions related to differential
privacy).



Sufficient Condition for Stability in Erasure Information

Definition (Bassily et al.) Learning algo. PW |Z is ε-KL-stable if

dH(z, z′) = 1 =⇒ D(PW |Z=z‖PW |Z=z′) ≤ ε.

Remarks:

1. The definition does not involve µ, only the algo.

2. In the original paper of Bassily et al. (2015), ε is replaced
by 2ε2 (to relate to usual notions of differential privacy).

Lemma. If PW |Z is ε-KL-stable, then it is ε-stable in erasure
information (and therefore in mutual information) for any µ.



Sufficient Condition for Stability in Erasure Information
Proof.

1. For any i ∈ [n],

I(W ;Zi|Z−i) =

∫
Zn
µ⊗n(dz)D(PW |Z=z‖PW |Z−i=z−i)

2. Marginalization:

PW |Z−i=z−i(·) =

∫
Z

µ(dzi)PW |Z=(z1,...,zi,...,zn)(·)

=

∫
Z

µ(dz′)PW |Z=zi,z′ (·)

where zi,z
′

:= (z1, . . . , zi−1, z
′, zi+1, . . . , zn)

3. By convexity of the relative entropy:

D(PW |Z=z‖PW |Z−i=z−i) ≤
∫
Z

µ(dz′)D(PW |Z=z‖PW |Z=zi,z′ ) ≤ ε

4. I−(Z;W ) =

n∑
i=1

I(W ;Zi|Z−i) ≤ nε.



Moment-Generating Functions

Definition. The logarithmic moment-generating function of a
random variable U is

ψ(λ) := logE[eλ(U−EU)], λ ∈ R.

Properties:

1. ψ(λ) is C∞ and convex in λ

2. ψ(0) = ψ′(0) = 0

3. Exponential Markov inequality: for any t > 0,

P[U ≥ EU + t] = P[eλ(U−EU) ≥ eλt] ≤ e−(λt−ψ(λ))

4. Chernoff bound:

P[U ≥ EU + t] ≤ e−ψ
∗(t),

where ψ∗(t) := sup
λ≥0
{λt− ψ(λ)} is the Legendre dual of ψ



Subgaussian Random Variables

I If U ∼ N(0, σ2), then

logE[eλU ] =
λ2σ2

2

I We say that a random variable U with EU <∞ is
σ2-subgaussian if

logE[eλ(U−EU)] ≤ λ2σ2

2
, λ ∈ R.

I Classic example (Hoeffding’s lemma): if −∞ < a ≤ U ≤ b <∞
almost surely, then

logE[eλ(U−EU)] ≤ λ2(b− a)2

8
, ∀λ ∈ R

Thus, any such U is (b−a)2

4 -subgaussian.



A Decoupling Estimate

Proposition. Let U and V be two jointly distributed random
objects, and let f(U, V ) be a real-valued function such that

sup
u

logE[eλ(f(u,V )−E[f(u,V )])] ≤ ψ+(λ), λ > 0

sup
u

logE[eλ(f(u,V )−E[f(u,V )])] ≤ ψ−(−λ), λ < 0

where ψ+, ψ− are convex and ψ±(0) = ψ′±(0) = 0. Then

E[f(U, V )− f(Ū , V̄ )] ≤ ψ∗−1
+ (I(U ;V )),

E[f(Ū , V̄ )]− f(U, V )] ≤ ψ∗−1
− (I(U ;V ))

where:

I PŪ ,V̄ = PU ⊗ PV
I ψ∗−1

± is the inverse of the Legendre dual ψ∗±



Proof

1. Donsker-Varadhan duality: for any λ > 0,

D(PV |U=u‖PV ) ≥ λE[f(u, V )|U = u]− logE[eλf(u,V )]

≥ λ
(
E[f(u, V )|U = u]−E[f(u, V )]

)
− ψ+(λ)

2. Rearrange and optimize:

E[f(u, V )|U = u]−E[f(u, V )] ≤ inf
λ>0

D(PV |U=u‖PV ) + ψ+(λ)

λ

= ψ∗−1
+ (D(PV |U=u‖PV ))

(see, e.g., the book of Boucheron–Lugosi–Massart)

3. Average w.r.t. U ∼ PU :

E[f(U, V )]−E[f(Ū , V̄ )] ≤
∫
PU (du)[ψ∗−1

+ (D(PV |U=u)‖PV )]

≤ ψ∗−1
+ (I(U ;V )),

where we have used the fact that ψ∗−1
+ is concave (since ψ∗+ is

convex).

4. The case with λ < 0 is analogous.



Bounding gen(µ, PW |Z) via Mutual Information

Theorem. Suppose that there exist convex functions ψ± : R+ → R
satisfying ψ±(0) = ψ′±(0) = 0, such that

sup
w∈W

E[e±λ(`(w,Z))−E[`(w,Z)]] ≤ ψ±(±λ), λ > 0.

Then, for any learning algorithm PW |Z such that I(W : Z) <∞,

ψ∗−1
+

(
1

n
I(W ;Z)

)
≤ gen(µ, PW |Z) ≤ ψ∗−1

−

(
1

n
I(W ;Z)

)
.

Remarks:

1. The subgaussian case is due to Xu–Raginsky (2017); related
results by Russo–Zou (2016).

2. The general case was analyzed by Jiao–Han–Weissman (2018);
Bu-Zou-Veeravalli (2019).



Proof

1. Since Zi
i.i.d.∼ µ, for any w ∈W and any λ > 0

logE

[
exp

{
±λ
(
LZ(w)− Lµ(w)

)}]
= n logE

[
exp

{
±λ
n

(
`(w,Z)−E[`(w,Z)]

)}]
≤ nψ±(±λ/n)

2. Now take U = W , V = Z, `(U, V ) = LZ(W ):

E[f(U, V )] = E[LZ(W )], E[f(Ū , V̄ )] = E[Lµ(W )].

Apply the Decoupling Estimate to get

gen(µ, PW |Z) ≤ inf
λ>0

I(W ;Z) + nψ−(λ/n)

λ

= inf
λ>0

1
nI(W ;Z) + ψ−(λ)

λ

= ψ∗−1
−

(
1

n
I(W ;Z)

)
3. The lower bound is similar.



Subgaussian Case

I When `(w,Z) is σ2-subgaussian for every w ∈W, we can
take

ψ±(t) =
t2σ2

2
, ∀t ∈ R

ψ∗−1
± (r) = inf

λ>0

r + λ2σ2/2

λ
=
√

2rσ2

I Under the above assumption, for any learning algo. PW |Z
we have

|gen(µ, PW |Z)| ≤
√

2σ2

n
I(W ;Z)

I In particular, if PW |Z is ε-stable w.r.t. µ in mutual
information or in erasure information,

|gen(µ, PW |Z)| ≤
√

2σ2ε.



A Concentration Inequality for |LZ(W )− Lµ(W )|

I So far, we have been concerned with

gen(µ, PW |Z) = E[Lµ(W )− LZ(W )]

I What about P[|Lµ(W )− LZ(W )| > ε] ?

I Let’s consider an extreme (and boring) case: W ⊥⊥ Z — the
learning algo. just ignores the data.

Then, assuming `(w,Z) is σ2-subgaussian for all w,

P
[
|LZ(W )− Lµ(W )| > ε

]
≤ 2e−

nε2

2σ2 , ∀ε > 0

— that is, given ε > 0 and 0 < δ ≤ 1, a sample size

n = Ω( 2σ2

ε2 log 2
δ ) suffices to guarantee

|LZ(W )− Lµ(W )| ≤ ε with prob. at least 1− δ.

I What happens if I(W ;Z) is suitably ‘small?’



A Concentration Inequality for |LZ(W )− Lµ(W )|
Theorem (Xu–Raginsky). Suppose `(w,Z) is σ2-subgaussian for all
w ∈W. Let PW |Z be a learning algo. with I(W ;Z) <∞. Let ε > 0
and 0 < δ ≤ 1 be given . Then, provided

n ≥ 8σ2

ε2

(
I(W ;Z)

δ
+ log

2

δ

)
,

we will have
P
[
|LZ(W )− Lµ(W )| > ε

]
≤ δ.

Remarks:

1. The proof uses the monitor technique of Bassily et al.: run the
algo. on m independent datasets Z1, . . . ,Zm, then select the
output with the largest value of |Lµ(Wj)− LZj (Wj)|; the
resulting ‘super-algo.’ has bounded mutual information.

2. The theorem does not give a ‘high-probability’ bound, due to 1
δ

additive term. Bassily et al. obtain such a bound assuming
differential privacy and 0 ≤ ` ≤ 1.



Variations and Extensions



Tighter Bound via Individual-Sample Mutual Info

Theorem (Bu–Zou–Veeravalli). Suppose `(w,Z) is σ2-subgaussian
for each w ∈W. Then for any learning algo. PW |Z we have

|gen(µ, PW |Z)| ≤ 1

n

n∑
i=1

√
2σ2I(W ;Zi)

This bound is tighter than the Xu–Raginsky bound:

√
I(W ;Z) =

√√√√ n∑
i=1

I(W,Zi−1;Zi) (chain rule, independence)

≥

√√√√ n∑
i=1

I(W ;Zi) (data processing)

≥ 1√
n

n∑
i=1

√
I(W ;Zi) (Jensen)



Proof

1. Decompose

gen(µ, PW |Z) = E[Lµ(W )− LZ(W )]

=
1

n

n∑
i=1

E[Lµ(W )− `(W,Zi)]

2. Apply the Decoupling Estimate to each term in the sum: take
U = W , V = Zi, f(U, V ) = `(W,Zi), then

|E[Lµ(W )− `(W,Z)]| ≤
√

2σ2I(W ;Zi)

3. Triangle inequality:

|gen(µ, PW |Z)| =

∣∣∣∣∣∣ 1n
n∑
i=1

E[Lµ(W )− `(W,Zi)]

∣∣∣∣∣∣
≤ 1

n

n∑
i=1

|E[Lµ(W )− `(W,Zi)]|

≤ 1

n

n∑
i=1

√
2σ2I(W ;Zi)



Tighter Bound via Random-Sample Mutual Info

Theorem. Under our usual assumptions,

|gen(µ, PW |Z)| ≤
√

2σ2I(W ;ZJ),

where J ∼ Uniform([n]) is independent of Z = (Z1, . . . , Zn) and W .

Remarks:

1. A learning algo. generalizes well if its output does not leak too
much info. about any training instance chosen uniformly at
random.

2. As we will see, this bound is tighter than our earlier bound
involving I(W ;Z).



Preparations for the Proof

Lemma A. Let Z1, . . . , Zn be i.i.d. samples from µ, and let
J ∼ Uniform([n]) be independent of the Zi’s. Then ZJ has
distribution µ and is independent of J .

Proof. For any measurable E ⊆ Z and j ∈ [n],

P[ZJ ∈ E, J = j] = P[ZJ ∈ E|J = j]P[J = j]

=
1

n
P[Zj ∈ E]

= P[J = j] · µ(E)

Marginalizing over J , we see that P[ZJ ∈ E] = µ(E), so ZJ ∼ µ.
Independence follows immediately.

Lemma B. For any PW |Z , ZJ and W are conditionally independent

given Z, and E[`(ZJ ,W )|Z] = 1
n

∑n
i=1 E[`(Zj ,W )|Z]

Proof. Obvious.



Proof of the Random-Sample Mutual Info Bound

1. Let W̄ ⊥⊥ (Z, J) be an independent copy of W . Then, since
ZJ ∼ µ,

E[Lµ(W )] = E[`(W̄ , ZJ)]

E[LZ(W )] = E

E[ 1

n

n∑
j=1

`(W,Zj)

∣∣∣∣∣Z
]

= E
[
E[`(W,ZJ)|Z]

]
= E[`(W,ZJ)]

Thus, gen(µ, PW |Z) = E[`(W̄ , ZJ)− `(W,ZJ)].

2. Since ZJ ∼ µ, `(w,ZJ) is σ2-subgaussian for every w ∈W. Thus,
by the Decoupling Estimate,

|gen(µ, PW |Z)| ≤
√

2σ2I(W ;ZJ).



Comparison with the Mutual Information Bound

I(W ;ZJ) ≤ I(W,J ;ZJ) (data processing)

= I(W ;ZJ |J) (chain rule, ZJ ⊥⊥ J)

=
1

n

n∑
i=1

I(W ;Zi)

≤ 1

n
I(W ;Z)

— the random-sample mutual information is not larger than
1
nI(W ;Z)



Part II

Information-Theoretically Stable
Learning Algorithms



Information-Theoretically Stable Learning Algorithms

I From now on, assume `(w,Z) is σ2-subgaussian for all w.

I We will look at two commonly used types of learning
algorithms and show that they are
information-theoretically stable:

1. The Gibbs algorithm.
2. Iterative noisy algorithms (including Stochastic Gradient

Langevin Dynamics).



Example 1: The Gibbs Algorithm



The Gibbs Algorithm

I Fix a data-independent prior distribution Q on W and a
parameter β > 0.

I The Gibbs algorithm is given by

P
(β)
W |Z=z(dw) =

e−βLz(w)Q(dw)

EQ[e−βLz(W )]

I The Gibbs algorithm is a ‘soft’ version of ERM: for any z,

P
(β)
W |Z=z

β→∞−−−→ PERM
W |Z=z in distribution



Generalization bound for the Gibbs Algorithm

Theorem (Xu-Raginsky). Suppose that the loss function
`(w, z) takes values between 0 and 1. Then for any µ and any
β > 0,

|gen(µ, P
(β)
W |Z)| ≤ β

2n
.



Proof

1. For any two z, z′ with dH(z, z′) = 1 (say, zj = z′j for all j 6= i),

Lz(w)− Lz′(w) =
1

n

[
`(w, zi)− `(w, z′i)

]
∈
[
− 1

n
,

1

n

]
2. We can use definitions and Hoeffding’s lemma:

D(P
(β)
W |Z=z‖P

(β)
W |Z=z′) =

∫
W

dP
(β)
W |Z=z log

dP
(β)
W |Z=z

dP
(β)
W |Z=z′

= β

∫
W

dP
(β)
W |Z=z (Lz′ − Lz) + log

EQ[e−βLz′ (W )]

EQ[e−βLz(W )]

= β

∫
W

dP
(β)
W |Z=z (Lz′ − Lz) + log

∫
W

dP
(β)
W |Z=ze

β(Lz−Lz′ )

≤ β
∫
W

dP
(β)
W |Z=z (Lz′ − Lz) + β

∫
W

dP
(β)
W |Z=z (Lz − Lz′)︸ ︷︷ ︸

=0

+
β2

2n2

3. Thus, for the Gibbs algorithm, I(W ;Z) ≤ I−(W ;Z) ≤ β2

2n



Gibbs Algorithm: An Origin Story

I Why this specific form for the Gibbs algorithm?

I Recall the information-theoretic bound for any PW |Z (under
subgaussianity):

gen(µ, PW |Z) = E[Lµ(W )]−E[LZ(W )]

≤
√

2σ2

n
I(W ;Z)

=⇒ E[Lµ(W )] ≤ E[LZ(W )] +

√
2σ2

n
I(W ;Z)

Lemma. If `(w,Z) is σ2-subgaussian for any w ∈W, then, for any
learning algo. PW |Z and any β > 0

E[Lµ(W )] ≤ E[LZ(W )] +
I(W ;Z)

β
+
βσ2

2n



Lemma. If `(w,Z) is σ2-subgaussian for any w ∈W, then, for any
learning algo. PW |Z and any β > 0

E[Lµ(W )] ≤ E[LZ(W )] +
I(W ;Z)

β
+
βσ2

2n

Proof.

E[Lµ(W )] ≤ E[LZ(W )] +

√
2σ2

n
I(W ;Z)

= E[LZ(W )] + inf
β>0

{
I(W ;Z)

β
+
βσ2

2n

}



The Gibbs Relaxation

Lemma. If `(w,Z) is σ2-subgaussian for any w ∈W, then, for any
learning algo. PW |Z and any β > 0

E[Lµ(W )] ≤ E[LZ(W )] +
I(W ;Z)

β
+
βσ2

2n

I To construct PW |Z with small E[Lµ(W )], let’s fix β > 0 and
choose

P ∗W |Z = arg min
PW |Z

{
E[LZ(W )] +

I(W ;Z)

β

}
I Bad idea!!! — I(W ;Z) depends on both PW |Z and µ, but the

latter is unknown! (That’s why we need learning in the first
place.)

I Better idea — introduce a relaxation.



The Gibbs relaxation

I Recall the Golden Formula: for any QW s.t. D(PW ‖QW ) <∞,

I(W ;Z) = D(PW |Z‖QW |PZ)−D(PW ‖QW )

I Consequently, for any PW |Z ,

E[LZ(W )] +
I(W ;Z)

β

≤ E[LZ(W )] +
D(PW |Z‖QW |PZ)

β

=

∫
Zn
µ⊗n(dz)

∫
W

PW |Z=z(dw)

{
Lz(w) +

D(PW |Z=z‖QW )

β

}

min
PW |Z

{
E[LZ(W )] +

I(W ;Z)

β

}
≤
∫
Zn
µ⊗n(dz) min

PW |Z=z

∫
W

PW |Z=z(dw)

{
Lz(w) +

D(PW |Z=z‖Q)

β

}



Enter the Gibbs Algorithm

Lemma. For any Q ∈ P(W),∫
W

PW |Z=z(dw)

{
Lz(w) +

D(PW |Z=z‖Q)

β

}
≥ − 1

β
logEQ[e−βLz(W )],

and the minimum is achieved uniquely by the Gibbs algorithm

P
(β)
W |Z=z(dw) =

e−βLz(w)Q(dw)

EQ[e−βLz(W )]

Proof. Exercise.



Expected Risk Bound for the Gibbs Algorithm

Putting everything together ...

Theorem. If `(w,Z) is σ-subgaussian for any w ∈W, then the

expected risk of the Gibbs algorithm P
(β)
W |Z satisfies

E[Lµ(W )] ≤ − 1

β
E
{

logE[e−βLZ(W̄ )|Z]
}

+
βσ2

2n
,

where W̄ ∼ Q and Z ∼ µ⊗n are independent.

Remarks:

1. Bounds of this sort are known as PAC-Bayesian bounds
(Catoni; McAllester; Ortiz; Zhang ...)

2. Now the whole affair hinges on being able to bound the
log-partition function EQ[e−βLz(W̄ )], uniformly in z.



Example: Smooth Losses

I Consider the case of W = Rd, `(w, z) differentiable in w and
L-smooth (∇ w.r.t. the first argument):

‖∇`(w, z)−∇`(v, z)‖ ≤ L‖w − v‖

I We are not assuming that w 7→ `(w, z) is convex.

I Let’s choose the Gaussian prior

Q(dw) =
1

(2πρ2)d/2
exp

(
−‖w‖

2

2ρ2

)
dw,

where ρ2 > 0 is a tunable parameter.

I Gibbs algorithm: given data z, draw W from the density

p
(β)
W |Z=z(w) ∝ exp

−
β
n

n∑
i=1

`(w, zi) +
1

2ρ2
‖w‖2





Excess Risk of Gibbs with Smooth Losses
Theorem. Assume the following:

1. `(w,Z) is σ2-subgaussian for every w ∈W.

2. `(w, z) is differentiable in w, and

sup
z∈Z
‖∇`(w, z)−∇`(v, z)‖ ≤ L‖w − v‖.

3. For all z ∈ Zn, all global minimizers of Lz(w) lie in the ball of
radius R.

Then for the Gibbs algo. P
(β)
W |Z with Gaussian prior Q = N(0, ρ2Id)

E[Lµ(W )] ≤ min
w
Lµ(w) +

Lπρ2d

β

+
1

2βρ2

R+

√
2πρ2d

β

2

+
d

2β
log

(
β

d

)
− 1

β
logVd +

βσ2

2n

where Vd is the volume of the unit ball in (Rd, ‖ · ‖).



Proof

1. Fix z, let w∗z be any global minimizer of Lz(w); recall ‖w∗z‖ ≤ R.

2. Since `(w, z) is L-smooth,

Lz(w)− Lz(w∗z) ≤ L

2
‖w − w∗z‖2

(see any text on optimization, e.g., Nesterov).

3. Now we can estimate (recall Q = N(0, ρ2Id)):∫
Rd
Q(dw)e−βLz(w) = e−βLz(w∗z)

∫
Rd
Q(dw)e−β(Lz(w)−Lz(w∗z))

≥ e−βLz(w∗z)

∫
Rd
Q(dw)e−

βL
2 ‖w−w

∗
z‖

2

4. It remains to lower-bound the Gaussian integral

G =
1

(2πρ2)d/2

∫
Rd
e
− 1

2ρ2
‖w‖2

e−
βL
2 ‖w−w

∗
z‖

2

dw



Proof (cont’d)

4. We want to lower-bound the Gaussian integral

G =
1

(2πρ2)d/2

∫
Rd
e
− 1

2ρ2
‖w‖2

e−
βL
2 ‖w−w

∗
z‖

2

dw

5. Let B := Bd2 (w∗z, ε), radius ε > 0 to be tuned later. Then:

G ≥ 1

(2πρ2)d/2
e−

βLε2

2 ·
∫
B

e
− 1

2ρ2
‖w‖2

dw

≥ 1

(2πρ2)d/2
e−

βLε2

2 · e−
1

2ρ2
(‖w∗z‖+ε)

2

Vold(B)

=
1

(2πρ2)d/2
e−

βLε2

2 · e−
1

2ρ2
(‖w∗z‖+ε)

2

εdVd

≥

(
ε2

2πρ2

)d/2
exp

(
−βLε

2

2
− 1

2ρ2
(R+ ε)2

)
Vd



Proof (Almost There ...)

6. Now we can estimate

− 1

β
E
{

logE[e−βLZ(W̄ )|Z]
}
≤ E

[
min
w∈W

LZ(w)

]
+
Lε2

2
+

1

2βρ2
(R+ ε)2 +

d

2β
log

(
2πρ2

ε2

)
− 1

β
logVd, ∀ε > 0

7. Choose ε2 = 2πρ2d
β to get

(· · · ) ≤ E

[
min
w
LZ(w)

]

+
Lπρ2d

β
+

1

2βρ2

R+

√
2πρ2d

β

2

+
d

2β
log

(
β

d

)
− 1

β
logVd

8. Finally, let w∗ be any minimizer of Lµ(w) and note that

E

[
min
w
LZ(w)

]
≤ E[LZ(w∗)] = min

w
Lµ(w).



Example 2: Noisy Iterative Algorithms



The Set-Up

I Suppose W = Rd, as before.

I We generate W as follows:

W = f(V1, . . . , VT )

V0 chosen randomly, independently of everything else

Vt = g(Vt−1)− ηtF (Vt−1, ZJt) + ξt, t = 1, 2, . . . , T

where:

I T ∈ N is a fixed number of iterations
I J1, . . . , Jt is a sequence of random elements of [n]
I {ηt}Tt=1 is a sequence of positive step sizes
I ξt ∼ N(0, ρ2

t Id) is a sequence of independent Gaussians,
independent of everything else

I f(·), g(·) and F (·, ·) are deterministic mappings

Pensia, Jog, Loh (2018)



Example: Stochastic Gradient Langevin Dynamics

Assume `(w, z) is differentiable in w

V0 = 0

Vt = Vt−1 − ηt∇`(Vt−1, ZJt) + ξt, t = 1, . . . , T

W = VT

where:

I J1, . . . , JT
i.i.d.∼ Uniform([n])

I {ηt}Tt=1 are positive step sizes

I ξt ∼ N(0, ρ2
t Id) with ρt = ηt

β for some β > 0

I g(v) = v, F (v, z) = ∇`(v, z), f(v1, . . . , vT ) = vT

Other choices of f are possible, e.g., f(v1, . . . , vT ) = 1
T

∑T
t=1 vt

(trajectory averaging) ...



Assumptions and Goal

I Sampling strategy : conditional distribution of
J = (J1, . . . , JT ) given (Z,V )

I Assumption 1: the sampling strategy is such that, for every
t ∈ [T − 1],

PJt+1|J1,...,Jt,V ,Z = PJt+1|J1,...,Jt,Z

— that is, the index of the sample in the next round does
not depend on the iterates V1, . . . , Vt, given the previous
choices J1, . . . , Jt and data Z

I Assumption 2: the update function F (·, ·) is bounded:

sup
v∈Rd

sup
z∈Z
‖F (v, z)‖ ≤ L <∞

I To control the generalization error, we will upper-bound
the mutual information I(W ;Z)



Mutual Information I(W ;Z)

I Let ZJ := (ZJ1 , . . . , ZJT ) and note that

Z ←→ ZJ ←→ V

I Then

I(W ;Z) = I(f(V );Z)

≤ I(V ;Z) (data processing)

≤ I(V ;ZJ ) (data processing again)

=

T∑
t=1

I(Vt;Z
J |V t−1) (chain rule)

so now we will analyze each of the conditional mutual
information terms

I By definition,

I(Vt;Z
J |V t−1) = h(Vt|V t−1)− h(Vt|V t−1,ZJ )

where h(·) is the differential entropy



Conditional Mutual Information I(Vt;Z
J |V t−1)

I Recall the stochastic update

Vt = g(Vt−1)− ηtF (Vt−1, ZJt) + ξt

which implies that Vt ←→ (Vt−1, ZJt)←→ (V t−2,ZJ\{Jt})

I Thus:

h(Vt|V t−1,ZJ ) = h(Vt|Vt−1, ZJt , V
t−2,ZJ\{Jt})

= h(Vt|Vt−1, ZJt)

I By the same token,

h(Vt|V t−1) = h(Vt|Vt−1)

Lemma (Pensia–Jog–Loh). Under the conditional independence
assumption on the sampling strategy,

I(Vt;Z
J |V t−1) = h(Vt|Vt−1)− h(Vt|Vt−1, ZJt) = I(Vt;ZJt |Vt−1)



Conditional Mutual Information I(Vt;ZJt|Vt−1)

I Conditionally on Vt−1 = vt−1,

Vt = g(vt−1)− ηtF (vt−1, ZJt) + ξt, ZJt ⊥⊥ ξt

I Then, by shift-invariance of differential entropy,

h(Vt|Vt−1 = vt−1) = h(Vt − g(vt−1)|Vt−1 = vt−1)

= h(−ηtF (vt−1, ZJ−t) + ξt|Vt−1 = vt−1)

I Recall: for any d-dim. random vector U with E‖U‖2 <∞,

h(U) ≤ d

2
log

(
2πeE‖U‖2

d

)
I Since ZJt ⊥⊥ ξt and E[ξt] = 0,

E[‖ − ηtF (vt−1, ZJt) + ξt‖2|Vt−1 = vt−1]

= η2
tE[‖F (vt−1, ZJt)‖2|Vt−1] + E‖ξt‖2 ≤ η2

tL
2 + dρ2

t

=⇒ h(Vt|Vt−1) ≤ d

2
log

(
2πe(η2

tL
2 + dρ2

t )

d

)



Conditional Mutual Information I(Vt;ZJt|Vt−1)

I By the same reasoning,

h(Vt|Vt−1, ZJt)

= h(g(Vt−1)− ηtF (Vt−1, ZJt) + ξt|Vt−1, ZJt)

= h(ξt|Vt−1, ZJt)

= h(ξt) ξt ⊥⊥ (Vt, ZJt)

=
d

2
log(2πeρ2

t ) ξt ∼ N(0, ρ2
t Id)

Lemma (Pensia–Jog–Loh). For every t ∈ [T ],

I(Vt;ZJt |Vt−1) ≤ d

2
log

(
1 +

η2
tL

2

dρ2
t

)
≤ η2

tL
2

2ρ2
t



Generalization Bound for Noisy, Iteratie Algorithms

Recall the processing pipeline:

Z −→ (V1, . . . , VT ) −→W

Vt = g(Vt−1)− ηtF (Vt−1, ZJt) + ξt, ξt ∼ N(0, ρ2
t Id)

W = f(V1, . . . , VT )

where we assume:

1. Jt is conditionally independent of V given (J1, . . . , Jt−1) and Z

2. ‖F (·, ·)‖ ≤ L

3. `(w,Z) is σ2-subgaussian for every w

Theorem (Pensia–Jog–Loh). Under the above assumptions,

gen(µ, PW |Z) ≤

√√√√σ2

n

T∑
t=1

η2
tL

2

ρ2
t



Generalization Bound for SGLD

I Assume `(w, z) is differentiable in w and L-Lipschitz:

sup
z∈Z
|`(w, z)− `(v, z)| ≤ L‖w − v‖

I Generate V1, . . . , VT : V0 = 0 (say)

Vt = Vt−1 − ηt∇`(Vt−1, ZJt) +

√
ηt
β
ξ̄t, ξ̄t

i.i.d.∼ N(0, Id)

W = f(V1, . . . , VT ) — arbitrary postprocessing

where T = nk for some k and ηt = 1
t

Theorem (Pensia–Jog–Loh).

|gen(µ, PW |Z)| ≤

√√√√βσ2L2

n

nk∑
t=1

1

t
≤
√
βσ2L2

n
(log n+ log k + 1)



What I (Unfortunately) Had to Skip

I Preservation of stability under adaptive composition:

PW1,...,Wk|Z = PW1|Z ⊗ PW2|W1,Z ⊗ . . .⊗ PWk|W1,...,Wk−1,Z

— need to require that I−(W ;Z) ≤ nε for any (not necessarily
product) distribution of Z (Steinke–Feldman, 2018)

I Refined bounds for Gibbs-type and other differentially private
algorithms (Wang–Lei–Fienberg, 2016; Dziugaite–Roy, 2019);
Kuzborskij–Cesa-Bianchi–Szepesvári, 2019)

I Other notions of information: max-information (Dwork et al.,
2016); Rényi information and divergence (Mironov, 2017);
concentrated differential privacy (Dwork and Rothblum, 2016;
Bun–Steinke, 2016)

I Total-variation and Wasserstein stability
(Raginsky–Rakhlin–Tsao–Wu–Xu, 2016; Alabdulmohsin, 2017;
Lopez–Jog, 2018)

I Refined bounds via mutual information and chaining for
subgaussian processes (Asadi–Abbe–Verdú, 2018; Asadi–Abbe,
2019)



Some Open Problems

1. Can we get ‘high-probability’ bounds on the generalization
error for information-theoretically stable learning
algorithms? Perhaps, under additional assumptions?

2. Can we prove information-theoretic stability of Stochastic
Gradient Descent (SGD), without additional noisy
perturbations? What about deterministic learning
algorithms? Some results by
Raginsky–Rakhlin–Tsao–Wu–Xu, 2016; Bu–Zou–Veeravalli,
2019

3. Converse results? Does poor generalization imply
information leakage? Some results by Bassily et al., 2018;
Nachum–Shafer–Yehudayoff, 2018; Nachum–Yehudayoff,
2019


