Statistical Data Privacy

Individuals

Researchers

queries

answers

Summaries

Complex models

Synthetic data

Large collections of personal information

- census data
- medical/public health
- social networks
- education
Two conflicting goals

- **Utility**: release aggregate statistics
- **Privacy**: individual information stays hidden

How do we define “privacy”?

- Studied since 1960’s in
 - Statistics
 - Databases & data mining
 - Cryptography
- This century: **Rigorous foundations and analysis**
Differential Privacy [Dwork, McSherry, Nissim, S., 2006]

• Several current deployments

Apple

Google

US Census

• Burgeoning field of research

Algorithms

Crypto, security

Statistics, learning

Game theory, economics

Databases, programming languages

Law, policy
Caveats

This is a tutorial.

• **Not a survey**
 - Incomplete
 - If I don’t cite your (or my) work, please forgive me.

• **Not a broadcast**
 - Ask questions!
 - Lots of material. No agenda.
Some Fantastic Resources

• Cynthia Dwork and Aaron Roth. *Algorithmic Foundations of Data Privacy*, 2013 (Extended tutorial / textbook)
• Aaron Roth and Adam Smith. Lecture Notes on Adaptive Data Analysis
 ➢ http://adaptivedatanalysis.com
• Tutorial videos:
 ➢ 2012 DIMACS Workshop on Differential Privacy across Computer Science.
 ➢ 2013 Simons Workshop on Big Data and Differential Privacy
 ➢ 2016 Newton Institute Workshop on Data Privacy and Linkage
 ➢ 2017 Bar-Ilan Winter School on Private Data Analysis
 ➢ 2019 Simons Institute Semester Program
 • Bootcamp + 3 workshops
• **Episode III: Attack of the Codes**
 - Reconstruction attacks
 - Membership attacks

• **Episode IV: A New Hope**
 - Differential privacy

• **Episode VI: Return of the Algorithms**
 - Algorithms for counting queries
 - Optimization and learning

• **Episode VII: The Connections Awaken**
 - Learning and adaptive data analysis
 - Statistics
 - Game theory
 - Law and policy
First attempt: Remove obvious identifiers

“AI recognizes blurred faces”
[McPherson Shokri Shmatikov ’16]

Name: [redacted]
Ethnicity: [redacted]

[Gymrek McGuire Golan Halperin Erlich ’13]

Everything is an identifier

[On Taxis and Rainbows
Lessons from NYC’s improperly anonymized taxi logs]

[Hospital A
Anonymize
Attacker]

[Hospital B
Anonymize]

[Ganta Kasiviswanathan S ’08]
Other reidentification attacks

• … based on **external sources**, e.g.
 ➢ Social networks
 ➢ Computer network traces
 ➢ Microtargeted advertising
 ➢ Recommendation systems
 ➢ Genetic data

• … based on **composition attacks**
 ➢ Combining independent anonymized releases

[Citations omitted]
Is the problem granularity?

What if we only release aggregate information?

Statistics together may encode data
- Average salary before/after resignation
- Support vector machine output reveals individual data points

• More generally:
 Too many, “too accurate” statistics reveal individual information
 — Reconstruction attacks [Dinur Nissim 2003, …]
 — Membership attacks [Homer et al. 2008, …]

Cannot release everything everyone would want to know
Reconstruction Attacks
Reconstruction Attacks [Dinur, Nissim 2003]

Individuals

\[\begin{align*} Z & \left\{ \begin{array}{c} \vdots \\ \vdots \\ \vdots \end{array} \right\} \end{align*} \]

\[\text{“Agency”} \]

\[\text{Attacker} \]

• If

 ➢ Agency publishes “enough” facts
 ➢ Facts are “sufficiently accurate”

then attacker can reconstruct (part of) the data.

• Typically: view facts + side information as constraints

• IT angle: view agency as \(\underbrace{\text{encoding}}_{\text{Computing facts}} + \underbrace{\text{noise}}_{\text{Distorting facts}} \)
In November 2016, the bureau staged something of an attack on itself. Using only the summary tables with their eight billion numbers, [they would] try to generate a record for every American that would show [their Census answers] — a “reconstruction” of the person-level data.

[...]

[The NYT was] able to perform our own reconstruction experiment on Manhattan. Roughly 1.6 million people are divided among 3,950 census blocks — which typically correspond to actual city blocks. The summary tables we needed came from the census website; we used simple tools like R and the Gurobi Optimizer; and within a week we had our first results. [...]

To Reduce Privacy Risks, the Census Plans to Report Less Accurate Data

Mark Hansen, New York Times, Dec. 5, 2018
An Abstract Setting: Linear Queries [DN’03]

The following problem arises in several settings:

• Data set has n people

• Secret vector $z \in \{0,1\}^n$

 (1 bit per person, not the same as the data set)

• Attacker sees only

 \[
 y = \frac{1}{n}Qz + e \quad \text{where} \quad \left\{ \begin{array}{l}
 Q \in \{0,1\}^{m \times n} \\
 |e|_\infty \leq \alpha
 \end{array} \right.
 \]

• Under what conditions on Q, α can attacker reconstruct $\hat{z} \in \{0,1\}^n$

 such that $\frac{\text{Ham}(\hat{z}, z)}{n} \to 0$?
Example 1: Secret Attribute

- Data set is $X = (A|z)$ where
 $A \in \{0,1\}^{d \times n}$ is matrix of known attributes, z is secret
 - Each person’s data is $d + 1$ bits

Suppose release reveals...

- Pairwise correlations
 - Attacker learns $y_j = \frac{\langle a_j, z \rangle}{n} \pm \alpha$ for each j
 - $y = A^T z + e$ and $m = d$.

- 3-wise conjunctions
 - Attacker learns $y_{j,\ell} = \frac{\langle a_j \circ a_\ell, z \rangle}{n} \pm \alpha$
 - $y = (A \circ A)^T z + e$ and $m = \binom{d}{2}$

- Convex optimization
 - Example: linear regression
 - Attacker learns $\hat{\theta} = \text{arg min}_{\theta} \|A\theta - z\|_2^2$
 - That is, $2(A\theta - z)^T A \approx 0$
 - Induces (approximate) linear constraints on z

\[
y = \frac{1}{n} Q z + e \] where $Q \in \{0,1\}^{m \times n}$, $|e|_{\infty} \leq \alpha$
Example 2: Who’s In, Who’s Out?

- Attacker knows superset of actual data set
 - A is matrix of superset (rows are potential individuals)
 - z is indicator vector of actual data
 - $X = \text{diag}(z_1, z_2, ..., z_n) \cdot A$
 - Column sums of X are $\mathbf{1}^\top X = Az$
 - Approximate marginal statistics give
 \Rightarrow approximate linear constraints on z
 - Similarly with k-way statistics and convex optimization

- Reconstructing z tells attacker who is in the data set
 - More about this type of attack later
When can we reconstruct? [DN’03]

- **All queries:** what if Q contains all possible $q \in \{0,1\}^m$?
 - $m = 2^n$
 - We know $\left| y - \frac{1}{n} Q z \right|_\infty \leq \alpha$

- **Attack:** Given y, Q: Set $\hat{z} = \text{argmin}_w \left| \frac{1}{n} Q w - y \right|_\infty$

- **Theorem:** $\text{Ham}(\hat{z}, z) \leq 4\alpha n$

- **Proof:**
 - $\text{Ham}(\hat{z}, z) \leq 2 \max_{q \in \{0,1\}^n} |q^t (\hat{z} - z)| \leq 4\alpha n$
 - But $\max_{q \in \{0,1\}^n} |q^t (\hat{z} - z)| = n \left| \frac{1}{n} Q (\hat{z} - z) \right|_\infty \leq \left| \frac{1}{n} Q \hat{z} - y \right|_\infty + \left| \frac{1}{n} Q z - y \right|_\infty \leq 2\alpha n$
 - Get $\frac{\text{Ham}(\hat{z}, z)}{n} \to 0$ as long as $\alpha \to 0$

- **To release anything that allows one to answer all counting queries, even approximately, you have to release the data**
How well can we reconstruct?

- What if m is close to n, not 2^n?
- General strategy

$$\hat{z} = \text{round} \left(\arg\min_{w \in [-1,1]^n} \left\| y - \frac{1}{n} Qw \right\|_p \right) \text{ for a } p \in [1, \infty]$$

- Rough rule: If $m > Cn$ and Q is “nice”, then $\frac{\text{Ham}(\hat{z},z)}{n} \leq O(\alpha^2 n)$

 - When $\alpha \ll \sqrt{n}$, the error goes to 0.
 - Beautiful connections to compressed sensing and discrepancy

- What’s “nice”?

 - Large min eigenvalue [DY]
 - Bounded “partial discrepancy” [MN]
 - Restricted isometry properties (beyond ℓ_∞ bounds on error) [DMT,De]

- What kinds of matrices?

 - Random [DiNi,DMT,…]
 - Random conjunctions [KRSU]
 - Hadamard [DY]

<table>
<thead>
<tr>
<th># queries m</th>
<th>2^n</th>
<th>$O(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error $\frac{\text{Ham}(\hat{z},z)}{n}$</td>
<td>4α</td>
<td>$2\alpha^2 n$</td>
</tr>
<tr>
<td>Running time</td>
<td>$\Omega(2^n)$</td>
<td>$O(n \log n)$</td>
</tr>
</tbody>
</table>
Hadamard Queries [DY08]

• Queries given by rows of ± 1 Hadamard matrix:

$$H_1 = (1) \quad H_n = \begin{pmatrix} H_{n/2} & H_{n/2} \\ H_{n/2} & -H_{n/2} \end{pmatrix}$$

• Attacks get $y = \frac{1}{n}H_n z + e$ where $|e|_\infty \leq \alpha$

 ➢ $\tilde{z} = \text{arg min}_w \|\frac{1}{n}H_n w - y\|_2 = nH_n^{-1}y = z + nH_n^{-1}e$

 ➢ $\hat{z} = \text{round}(\tilde{z})$

• Running time: $O(n \log n)$ by divide and conquer (FFT)

• Error

 ➢ $\frac{\text{Ham}(\text{round}(\tilde{z}), z)}{n} \leq \frac{2}{n} \|\tilde{z} - z\|_2^2$ by Markov argument

 ➢ Eigenvalues of H_n are $\pm \sqrt{n}$ since $(H_n)^2 = nI$

 • $\|\tilde{z} - z\|_2 \leq \sqrt{n}\|e\|_2 = \alpha n$ since $\|e\|_2 = \alpha \sqrt{n}$

 ➢ $\frac{\text{Ham}(\text{round}(\tilde{z}), z)}{n} \leq 2\alpha^2 n$
Membership Testing Attacks
A Few Membership Attacks

• [Homer et al. 2008] Exact high-dimensional summaries allow an attacker to test membership in a data set

 ➢ Caused US NIH to change data sharing practices

• [Dwork, S, Steinke, Ullman, Vadhan, FOCS ‘15] Distorted high-dimensional summaries allow an attacker to test membership in a data set

• [Shokri, Stronati, Song, Shmatikov, Oakland 2017] Membership inference using ML as a service (from exact answers)

 ➢ Several follow-up papers in the security literature
Suppose

- We have a data set in which membership is sensitive
 - Participants in clinical trial
 - Targeted ad audience
- Data has many binary attributes for each person
 - Genome-wide association studies
 - $d = 1\,000\,000$ (“SNPs”), $n < 2000$
Membership Attacks

- Release **exact** column averages
- Attacker succeeds with high probability when there are more attributes than people

Membership Attacks

- Release exact distorted column averages ($±\alpha$)
- Attacker succeeds with high probability when there are more attributes than people and $\alpha \ll \sqrt{d/n}$

<table>
<thead>
<tr>
<th>n people</th>
<th>d attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Alice’s data:

| "In" | | | | | | | | | |
| "Out" | | | | | | | | | |

Attacker:

No matter how distortion performed
Membership Attacks

- Release exact distorted column averages (\pm)
- Attacker succeeds with high probability when there are more attributes than people and $\ll \% / \sqrt{d/n}$
- Alice’s data

Key technical idea [DSSUV]:
- Rows of data base form (random) fingerprinting code

 [Boneh Shaw ’97, Tardos ’03, Bun Ullman Vadhan’14]
- Decoder only needs statistical summaries
- Analysis is subtle
Robustness to perturbation

- $n = 100$
- $m = 200$
- $d = 5,000$
- **Two tests**
 - LR [Sankararam et al’09]
 - IP [DSSUV’15]
- **Two publication mechanisms**
 - Rounded to nearest multiple of 0.1 (red / green)
 - Exact statistics (yellow / blue)

Conclusion: IP test is robust.
Calibrating LR test seems difficult
Machine Learning as a Service

Model

Prediction API

Training API

DATA

Sensitive!
Transactions, preferences, online and offline behavior

Input from users, apps …

Classification
Exploiting Trained Models

- Input from the training set
- Input not from the training set

Classification

Model

Prediction API

Training API

recognize the difference
Exploiting Trained Models

Train a model to... recognize the difference

Model

Prediction API

Training API

... without knowing the specifics of the actual model!
Lessons

1. “Too many, too accurate” statistics allow one to reconstruct the data

2. “Aggregate” is hard to pin down
• **Episode III: Attack of the Codes**
 - Reconstruction attacks
 - Membership attacks

• **Episode IV: A New Hope**
 - Differential privacy

• **Episode VI: Return of the Algorithms**
 - Algorithms for counting queries
 - Optimization and learning

• **Episode VII: The Connections Awaken**
 - Learning and adaptive data analysis
 - Statistics
 - Game theory
 - Law and policy
Differential Privacy

• Several current deployments

Apple Google US Census

In the works: Uber, Yahoo, Microsoft, LinkedIn, …

• Burgeoning field of research

Algorithms Crypto, security Statistics, learning Game theory, economics Databases, programming languages Law, policy
Differential Privacy

- **Data set** \(x = (x_1, \ldots, x_n) \in D^n \)
 - Domain \(D \) can be numbers, categories, tax forms
 - Think of \(x \) as **fixed** (not random)

- **A = probabilistic procedure**
 - \(A(x) \) is a random variable
 - Randomness might come from adding noise, resampling, etc.
A thought experiment

- Change one person’s data (or add or remove them)
- Will the probabilities of outcomes change?

For any set of outcomes, (e.g. I get denied health insurance) about the same probability in both worlds
Differential Privacy

x' is a neighbor of x if they differ in one data point

Definition: A is ϵ-differentially private if, for all neighbors x, x', for all subsets S of outputs

$$\Pr(A(x) \in S) \leq e^\epsilon \Pr(A(x') \in S)$$

ϵ is a leakage measure

Neighboring databases induce **close** distributions on outputs
Randomized Response [Warner 1965]

• Want to release the fraction of students who’ve cheated on a test
 ➢ Each person’s data is a bit: $x_i = 0$ or $x_i = 1$

• Randomized Response:
 ➢ Each individual rolls a die
 • 1, 2, 3 or 4: Report $Y_i = \text{true}$ value x_i
 • 5 or 6: Report $Y_i = \text{opposite}$ value $1 - x_i$
 ➢ Output = list of reported values $Y_1, ..., Y_n$
Randomized Response

Why is it “private”?

Thought experiment: Change x_{Adam} from 0 to 1

- $Y_{Adam} = 1$ happens with probability $\frac{2}{3}$ instead of $\frac{1}{3}$
 - Plausible deniability

- Satisfies ε-DP with $\varepsilon \approx 0.7$

Why is it “useful”?

- Can estimate fraction of x_i’s that are 1

Exercise: Find f such that $E \left| f(A_{RR}(\vec{x})) - \frac{1}{n} \sum_i x_i \right| = \Theta\left(\frac{1}{\varepsilon \sqrt{n}}\right)$

Each individual rolls a die

- 1, 2, 3 or 4: Report true value x_i
- 5 or 6: Report opposite value \bar{x}_i
Laplace Mechanism

- Say we want to release a summary $f(x) \in \mathbb{R}^d$

 - e.g., proportion of cheaters: $x_i \in \{0,1\}$ and $f(x) = \frac{1}{n} \sum_i x_i$

- Simple approach: add noise to $f(x)$

 - How much noise is needed?
 - Idea: Calibrate noise to some measure of f’s volatility
Laplace Mechanism

- Global Sensitivity: \(\text{GS}_f = \max_{\text{neighbors } x, x'} \| f(x) - f(x') \|_1 \)

- Example: \(\text{GS}_{\text{proportion}} = \frac{1}{n} \)
Laplace Mechanism

- Global Sensitivity: \(\text{GS}_f = \max_{\text{neighbors } x, x'} \| f(x) - f(x') \|_1 \)

 ➢ Example: \(\text{GS}_{\text{proportion}} = \frac{1}{n} \)

Theorem: \(A_{\text{Lap}}(x) = f(x) + \text{Lap} \left(\frac{\text{GS}_f}{\epsilon} \right) \) is \(\epsilon \)-DP.

 ➢ Requires noise from Laplace distribution

\[
h(y) = \frac{1}{2\lambda} e^{-|y|/\lambda}
\]

 ➢ Changing one value translates curve
Laplace Mechanism

- Example: proportion of diabetics
 - GS\text{proportion} = \frac{1}{n}
 - Release \ A(x) = \text{proportion} \pm \frac{1}{\epsilon n}
- Is this a lot?
 - If \ x is a random sample from a large underlying population, then sampling noise \approx \frac{1}{\sqrt{n}}
 - \ A(x) “as good as” real proportion

\[
A(x) = f(x) + \text{noise}
\]
Differential Privacy

A is a neighbor of x if they differ in one data point.

Definition: A is (ϵ, δ)-differentially private if, for all neighbors x, x', for all subsets S of outputs

$$
\Pr(A(x) \in S) \leq e^{\epsilon} \cdot \Pr(A(x') \in S) + \delta
$$
Gaussian Noise

A function f satisfies Gaussian noise addition if

$$A(x) = f(x) + \text{noise}$$

It satisfies (ϵ, δ)-DP with Euclidean sensitivity $G_{S_f, \ell_2} = \max_{\text{neighbors } x, x'} \|f(x) - f(x')\|_2$

Reconstruction attacks $\frac{1}{\sqrt{n}}$

Tracing attacks [BUVI4,DSSUV16] $\sqrt{d/n}$

Differential privacy
Useful Properties

- **Composition:** If A_1, A_2, \ldots, A_k are (ϵ, δ)-differentially private, then joint output $A_1(x), A_2(x), \ldots, A_k(x)$ is
 - $(k\epsilon, k\delta)$-differentially private [JL09,MM09], and
 - $\approx (\epsilon \sqrt{k \ln 1/\delta}, k\delta)$-differentially private [DRV10]

- **Post-processing:** If A is ϵ-differentially private, then so is $g(A)$ for any function g

Consequence 1: Modular design!

Consequence 2: Privacy is a consumable resource
- ϵ measures leakage
- can be treated as a “privacy budget”
- Each analysis consumes some
Interpreting Differential Privacy

• A naïve hope:
 Your beliefs about me are the same after you see the output as they were before

• Impossible
 ➢ Suppose you know that I smoke
 ➢ Clinical study: “smoking and cancer correlated”
 ➢ You learn something about me
 • Whether or not my data were used

• Differential privacy implies:
 No matter what you know ahead of time,
 You learn (almost) the same things about me whether or not my data are used

 ➢ Provably resists attacks mentioned earlier
Bayesian Interpretation [KS08]

• Suppose you are an attacker
 - “Background knowledge” = prior distribution \(p(X = \cdot) \)
 - “Conclusions about \(i \) on output \(a \)” = \(p(X_i = \cdot | A(X) = a) \)
 - Experiment 0: Run \(A(X) \)
 - Experiment \(i \): Run \(A(X_{-i}) \) with \(x_{-i} = (x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n) \)

• **Theorem:** If \(A \) is \((\epsilon, \delta)\)-DP with \(\delta \ll \frac{1}{n} \), then for all \(i \),

\[
\begin{align*}
X_i \bigg|_{A(X) = a} & \approx_{\epsilon', \delta'} X_i \bigg|_{A(X_{-i}) = a} \\
\text{with prob.} & \geq 1 - \sqrt{\delta n}
\end{align*}
\]

Prior \(p(X = \cdot) \)

Output \(y \)

\[
\begin{align*}
\text{Bayes’ rule with} & \quad \Pr(y|x) = \Pr(A(x) = y) \\
\rightarrow & \quad p_0(X_i = \cdot)
\end{align*}
\]

\[
\begin{align*}
\text{Bayes’ rule with} & \quad \Pr(y|x) = \Pr(A(x_{-}) = y) \\
\rightarrow & \quad p_i(X_i = \cdot)
\end{align*}
\]

Close w.h.p.
What can we compute privately?

- “Privacy” = change in one input leads to small change in output distribution

What computational tasks can we achieve privately?

- Lots of recent work, interesting questions

 - Across different fields: statistics, data mining, machine learning, cryptography, algorithmic game theory, networking, information theory
A Broad, Active Field of Science

- Algorithmic tools and techniques
- Theoretical foundations
 - Feasibility results: Learning, optimization, synthetic data, statistics
 - Variations on the definition
- Design tools
 - Programming/query languages, logics, evaluation platforms
- Domain-specific algorithms
 - Networking, clinical data, social networks, geographic data, mobile traces …
- Connections to other areas
 - Law and policy
 - “Adaptive” generalization bounds
 - Game theory

Google Scholar:
1,000+ articles with “differential privacy” in the title
13,000+ articles with “differential privacy” in text
- **Episode III: Attack of the Codes**
 - Reconstruction attacks
 - Membership attacks
- **Episode IV: A New Hope**
 - Differential privacy
- **Episode VI: Return of the Algorithms**
 - Algorithms for counting queries
 - Optimization and learning
- **Episode VII: The Connections Awaken**
 - Learning and adaptive data analysis
 - Statistics
 - Game theory
 - Law and policy
Basic Technique 1: Noise Addition
Laplace + Gaussian Mechanisms

- **Global Sensitivity:** \(GS_{f,p} = \max_{x,x'} \| f(x) - f(x') \|_p \)

 - **Example:** \(GS_{\text{proportion}} = \frac{1}{n} \)

Theorem:

- \(A_{\text{Lap}}(x) = f(x) + \text{Lap} \left(\frac{GS_{f,1}}{\epsilon} \right) \) is \(\epsilon \)-DP.
- \(A_{\text{Gauss}}(x) = f(x) + N \left(0, \left(2GS_{f,2} \sqrt{\log \frac{1}{\delta} / \epsilon} \right)^2 \right) \) is \((\epsilon, \delta) \)-DP.
Example: Histograms

- Say x_1, \ldots, x_n in domain D
 - Partition D into d disjoint bins
 - $f(x) = (n_1, \ldots, n_d)$ where $n_j = \#\{i: x_i \text{ in } j\text{-th bin}\}$
 - $GS_{f,1} = GS_{f,2} = 1$
 - Sufficient to add noise $\text{Lap} \left(\frac{1}{\epsilon} \right)$ to each count

- Examples
 - Histogram on the line
 - Populations of 50 states
 - Marginal tables
 - bins = possible combinations of attributes
Global versus local [NRS07]

- Global sensitivity is worst case over inputs
- Local sensitivity:
 \[\text{LS}_f(x) = \max_{x' \text{ neighbor of } x} \| f(x) - f(x') \|_1 \]
- Reminder: \(\text{GS}_f(x) = \max_x \text{LS}_f(x) \)
- [NRS’07, DL’09, …] Techniques with error \(\approx \) local sensitivity
 - Basis of best algorithms for graph data
Basic Technique 2:
Exponential Sampling
Exponential Sampling [McSherry, Talwar ‘07]

- Sometimes noise addition makes no sense
 - mode of a discrete distribution
 - minimum cut in a graph
 - classification rule

- [MT07] Motivation: auction design

- Subsequently applied very broadly
Exponential Sampling

- Data: \(x_i = \{\text{websites visited by student i today}\} \)
- Range: \(Y = \{\text{website names}\} \)
- “Score” of \(y \): \(q(y; x) = |\{i : y \subseteq x_i\}| \)
- Goal: output a site with \(q(y; x) \approx \max_y q(y; x) \)

ExpMech: Given \(x \),
Output website \(y \) with probability \(r_x(y) \propto e^{\epsilon q(y;x)} \)

- Utility: Popular sites exponentially more likely than rare ones
- Privacy: One person changes websites’ scores by \(\leq 1 \)
Analysis

- **Lemma**: ExpMech is \((2\epsilon, 0)\)-differentially private.

- **Proof**:

 - Look at ratio \(\frac{r_x(y)}{r_{x'}(y)} = \frac{\exp(\epsilon q(y; x))}{\exp(\epsilon q(y; x'))} \cdot \frac{C_{x'}}{C_x}\)

 where \(C_x = \sum_y \exp(\epsilon q(y; x))\)

 - Each term contributes at most \(e^\epsilon\) to ratio.

- **Prop**: Let \(OPT_x = \max_y q(y; x)\). For all \(\beta > 0\), \(\hat{y} = \text{ExpMech}(x)\) satisfies \(q(\hat{y}; x) \geq OPT_x - \ln \left(\frac{|Y|}{\beta}\right) / \epsilon\)

 with probability \(\geq 1 - \beta\).

- **Proof**: Let \(G_t = \{y \in Y: q(y; x) \geq OPT_x - t\}\)

 - Consider the ratio \(\frac{\Pr(G_t)}{\Pr(G_t)} \leq |Y|e^{-\epsilon t}\).
Exponential Sampling, in General

Ingredients:
• Set of outputs Y with prior distribution $p(y)$
• **Score function** $q(y; x)$ such that for all y, neighbors x, x': $|q(y; x) - q(y; x')| \leq \Delta$

ExpMech: Given x,
• Output y from Y with probability
 $$r_x(y) \propto p(y) e^{\frac{\epsilon q(y; x)}{\Delta}}$$

• **Prop:** Let $OPT_x = \max_y q(y; x)$. For all $\beta > 0$, $\hat{y} = \text{ExpMech}(x)$ satisfies $q(\hat{y}; x) \geq OPT_x - \Delta \frac{\ln(|Y|)}{\epsilon} \beta$ with probability $1 - \beta$.
Using Exponential Sampling

• Mechanism above very general
 ➢ Every differentially private mechanism is an instance!
 ➢ Still a useful design perspective

• Perspective used explicitly for
 ➢ Learning discrete classifiers [KLNRS’08]
 ➢ Synthetic data generation [BLR’08,...,HLM’10]
 ➢ Convex Optimization [CM’08,CMS’10]
 ➢ Frequent Pattern Mining [BLST’10]
 ➢ Genome-wide association studies [FUS’11]
 ➢ High-dimensional sparse regression [KST’12]
 ➢ ...

About the Exponential Mechanism

• ExpMech is “Gibbs sampling”
 ➢ Maximizes expected score subject to entropy constraint

• Alternative Implementation: “Report Noisy Max”
 ➢ Add noise $Lap\left(\frac{\Delta}{\epsilon}\right)$ to each score
 ➢ Report argmax of noisy scores
 • Basically the same distribution as Gibbs!

• Lower bound
 ➢ Every (ϵ, δ)-DP algorithm, in worst case, outputs \hat{y} with
 $$q(\hat{y}; x) \leq OPT_x - \Omega\left(\frac{\Delta \ln(|Y|)}{\epsilon}\right).$$

• Generalizations
 ➢ “Online” version (“sparse vector technique”)
 ➢ Variants do much better on specific classes of inputs
 ➢ Can handle scores with different sensitivities smoothly
Sparse Vector Technique [RR’10, HR’10]

• “Online” variant of exponential mechanism

• Input:
 - Data set \(x \)
 - Public score \(q(\cdot;\cdot) \), threshold \(T \)
 - Set \(Y \) arrives as a public sequence \(y_1, y_2, \ldots \) with private scores \(q(y_j; x) \)

• Goal:
 - Output the first item with score (significantly) above \(T \)

• Algorithm
 - \(\tilde{T} \leftarrow T + \text{Lap} \left(\frac{4\Delta}{\varepsilon} \right) \)
 - For \(i = 1, 2, \ldots, |Y| \):
 - \(\tilde{q}_i \leftarrow q(y_i; x) + \text{Lap} \left(\frac{2\Delta}{\varepsilon} \right) \)
 - If \(\tilde{q}_i > \tilde{T} \), stop and output \(y_i \)
Linear Queries

Case Study
Collections of linear queries

- Data is a multi-set in domain D
- Represented as a histogram $\vec{x} \in \mathbb{N}^{|D|}$ where $x(i) = (#$ occurrences of i in x)
- **Linear query** is given by a function $f : D \to [0,1]$,
 - Answer to f on x is $\sum_{i \text{ in } x} f(i) = \langle f, x \rangle$
- **Goal**: Given a workload of queries f_1, \ldots, f_m, release $\hat{f}_1, \ldots, \hat{f}_m$ to minimize $\alpha = \frac{1}{n} \max_j |\hat{f}_j - \langle f_j, x \rangle|$
 - Captures releasing collections of contingency tables, means, covariance matrices, etc
- **How low can the error be**
 - in terms of $n, m, |D|$?
 - for a particular collection of queries?

Could also look at ℓ_1 or ℓ_2 errors
Error bounds for linear queries

• **Goal:** Given f_1, \ldots, f_m, minimize $\alpha n = \max_j |\hat{f}_j - \langle f_j, x \rangle|$

 - Alternately, find n necessary for given error α

• Laplace mechanism + composition results

 - Require $n \geq O\left(\frac{m \log m}{\alpha \epsilon}\right)$ or $n \geq O_\delta\left(\frac{\sqrt{m \log m}}{\alpha \epsilon}\right)$

 - Best possible when $n \gg m$

 - Time $O(mn)$

• “Learn the data” paradigm [BLR’08, DNNRV’09, RR’10, HR’10, HLM’11]

 - $n \geq O\left(\frac{\log^3 (m \cdot |D|)}{\epsilon \alpha^3}\right)$ or $n \geq O_\delta\left(\frac{\sqrt{\log m \cdot \log |D|}}{\alpha^2 \epsilon}\right)$

 - Allows exponentially many queries 😊

 - Time $O(mn|D|)$

 - Can be exponential 😞
Idea: “Learn the data” [DNNRV’09, HR’10]

Release mechanism learns a “model” of \(x \) through DP interface

- Search for \(\hat{x} \) to minimize \(\text{error}(\hat{x}) = \max_j |\langle f_j, \hat{x} \rangle - \langle f_j, x \rangle| \)
 (Generally do not get \(\hat{x} \approx x \))

<table>
<thead>
<tr>
<th>Traditional learning</th>
<th>“Learn for privacy”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters of classifier</td>
<td>Data model (\hat{x})</td>
</tr>
<tr>
<td>Training data</td>
<td>User’s queries (f_j)</td>
</tr>
<tr>
<td>Gradient computations</td>
<td>Actual data access</td>
</tr>
</tbody>
</table>

- Learner computes a sequence of estimates \(\hat{x}_0, \hat{x}_1, \hat{x}_2, \ldots \)
- Gradient: \(\nabla \text{error}(\hat{x}_t) = \pm f_j^* \)
 where \(j^* = \arg \max_j |\langle f_j, \hat{x}_t \rangle - \langle f_j, x \rangle| \)
“Learn the data” as a game

Can think of this as a two-player game

- Learner plays generative model \(\hat{x} \)
- Data holder uses DP algorithm to find query that distinguishes \(\hat{x} \) from real data \(x \)

Similar to generative adversarial networks (GANs)

Game perspective leads to current best algorithms for creating synthetic data, e.g.

“Geometric” approaches I

- Consider matrix \mathbf{W} with columns f_1, \ldots, f_m
 - Goal: find $\widehat{\mathbf{w}}$ such that $\|\widehat{\mathbf{w}} - \mathbf{Wx}\|$ is small
- Define sensitivity polytope [Hardt Talwar 10]
 $$K = \text{conv}(\pm f_1, \ldots, \pm f_m)$$
- Observe:
 - Sensitivity: for x, x' neighbors, $\mathbf{Wx} - \mathbf{Wx'} \in K$
 - Range: if x has n records, then $\mathbf{Wx} \in n \cdot K$
- This suggests two general approaches
 - [HT’10] Release noise scaled to K-norm: $A(x) = \mathbf{Wx} + \mathbf{Z}$ where $p_{\mathbf{Z}}(y) \propto \exp(-\epsilon \|y\|_K)$ and $\|y\|_K = \min\{r \geq 0 : y \in r \cdot K\}$
 - Projection [Nikolov Talwar Zhang ’13]:
 $$A(x) = \text{Proj}_{nK}(\mathbf{Wx} + \text{noise})$$
 where $\text{Proj}_{nK}(\mathbf{z}) = \arg\min\{\|\mathbf{y} - \mathbf{z}\|_2 : \mathbf{y} \in n \cdot K\}$
- Variations on these are known to be (close to) optimal in several settings [HT’10, BDKT’12, NTZ’13]
“Geometric” approaches II

• Given W, “matrix mechanism” [Li, Miklau, Hay, McGregor, Rastogi, 10] and follow-ups have 3 stages:
 - Select “good” $k \times |D|$ matrices A and B such that $W = BA$
 - Measure $y = Ax + Z$ where Z is Laplace/Gaussian
 - “Reconstruct” $\widehat{w} = By$
 - Output projected value $\widehat{w} = Proj_{nK}(\widehat{w})$

• Selection of A, B depends on kind of noise and error goal
 - For Gaussian noise and ℓ_2 error, objective is $\|B\|_F \cdot \|A\|_{1\rightarrow 2}$
 • $\|B\|_F$ is sum of squared entries
 • $\|A\|_{1\rightarrow 2}$ is maximum norm of columns in A

• Basis of current Census implementations
• **Episode III: Attack of the Codes**
 - Reconstruction attacks
 - Membership attacks

• **Episode IV: A New Hope**
 - Differential privacy

• **Episode VI: Return of the Algorithms**
 - Algorithms for counting queries
 - Optimization and learning

• **Episode VII: The Connections Awaken**
 - Learning and adaptive data analysis
 - Statistics
 - Game theory
 - Law and policy
The Local Model for Differential Privacy
Local Model for Privacy

• “Local” model
 - Person i randomizes their own data
 - Attacker sees everything except player i’s local state

• Definition: A is ϵ-locally differentially private if for all i:
 - for all neighbors x, x',
 - for all local coins r_{-i} of all other parties,
 - for all transcripts t:

$$\Pr_{\text{coins } r_i} (A(x, r_{-i}) = t) \leq e^\epsilon \cdot \Pr_{\text{coins } r_i} (A(x', r_{-i}) = t)$$

$\delta = 0$

w.l.o.g.

[BNS17]
Local Model for Privacy

• Pros
 ➢ No trusted curator
 ➢ No single point of failure
 ➢ Highly distributed

• Cons
 ➢ Lower accuracy
Local Model for Privacy

What can and can’t we do in the local model?
Example: Randomized response

- Each person has data \(x_i \in \mathcal{X} \)
 - Analyst wants to know average of \(f: \mathcal{X} \to \{-1,1\} \) over \(x \)
 - E.g. “what is the fraction of diabetics”?
- Randomization operator takes \(y \in \{-1,1\} \):
 \[
 Q(y) = \begin{cases}
 +y & \text{w. p. } \frac{e^\varepsilon}{e^\varepsilon+1} \\
 -y & \text{w. p. } \frac{1}{e^\varepsilon+1}
 \end{cases}
 \]

 - Observe:
 - If \(c_\varepsilon = \frac{e^\varepsilon+1}{e^\varepsilon-1} \), then \(E(c_\varepsilon \cdot Q(y)) = y \)
- How can we estimate a proportion?
 - \(A(x_1, \ldots, x_n) = \frac{1}{n} \sum_i c_\varepsilon \cdot Q(f(x_i)) \)
- Proposition: \(E \left| A(x) - \frac{1}{n} \sum_i f(x_i) \right| \leq \frac{c_\varepsilon}{2\sqrt{n}} \approx \frac{1}{\varepsilon \sqrt{n}} \).
What can we do using noisy averages?

- An **SQ algorithm** interacts with a data set by asking a series of “statistical queries”
 - Query: $f : \mathcal{X} \rightarrow [-1,1]$
 - Response: $\hat{\alpha} \in \frac{1}{n} \sum_i f(x_i) \pm \alpha$ where α is the tolerance

- Huge fraction of basic learning/optimization algorithms can be expressed in SQ form [Kearns 93]

Theorem (follows [Blum Dwork McSherry Nissim ‘05]):
Every q-query SQ algorithm with tolerance α can be simulated by ϵ-LDP protocol when $n \geq \frac{q \ln q}{\alpha^2 \epsilon^2}$.

Central model: $n \approx \frac{\sqrt{q \ln q}}{\alpha \epsilon}$
Histograms

- Every participant has \(x_i \in \{1, 2, \ldots, d\} \).
- Histogram is \(h(x) = (n_1, n_2, \ldots, n_d) \) where \(n_j = \# \{ i : x_i = j \} \).
- Straightforward protocol: Map each \(x_i \) to indicator vector \(e_{x_i} \)

 - So \(h(x) = \sum_i e_{x_i} \)

 - \(Q'(x_i) \): Apply \(Q(\cdot) \) to each entry of \(e_{x_i} \).

Proposition: \(Q'(\cdot) \) is 2\(\epsilon \)-LDP and

\[
E \left\| \sum_i Q'(x_i) - h(x) \right\|_\infty \leq \sqrt{n \log d} \frac{\log(1/\delta)}{\epsilon}
\]

Central:

\[
O \left(\frac{\log(1/\delta)}{\epsilon} \right)
\]

[\text{Mishra Sandler 2006, Hsu Khanna Roth 2012,}
\text{Erlingsson, Pihur, Korolova 2014, Bassily Smith 2015, …}]
Succinctness

- Randomized response has optimal error $\frac{\sqrt{n \log d}}{\epsilon}$
 - Problem: Communication, time, and server memory $\Omega(d')$
 - How much is really needed?

- **Theorem** [Bassily, Nissim, Stemmer, Thakurta ‘17, Bun, Nelson, Stemmer ‘18]:
 Protocol with
 - optimal error,
 - $\tilde{O}(\epsilon \sqrt{n \log d})$ space,
 - $\tilde{O}(n)$ total time

- **Upper bound idea:**
 - Connection to “heavy hitters” algorithms from streaming [Hsu, Khanna, Roth ‘12]
 - Two data structures:
 - estimate individual frequencies
 - Identify heavy hitters

- **Experimental evaluation** [cites above + Wang, Li, Jha ‘18]
Vector averages [Duchi Jordan Wainright ‘13]

- Suppose each input is a vector $x_i \in \mathbb{R}^d$ with $\|x_i\|_2 \leq 1$
 - How can we estimate $\frac{1}{n} \sum_i x_i$?
- Use rand. response for each of the d coordinates?
 - Use $\frac{n}{d}$ players to estimate each coordinate.
 - Error $\sqrt{d/n\epsilon^2}$ per coordinate.
 - Total ℓ_2 error $E \left\| A(x) - \frac{1}{n} \sum_i x_i \right\|_2 \leq d/\sqrt{n\epsilon^2}$

Theorem [DJW’13]: Can estimate to error $\sqrt{d/n\epsilon^2}$.

- Idea: Let $B_d = \text{unit ball in } \mathbb{R}^d$
 - $R(v)$ samples uniformly from either
 - $\{u \in B_d : \langle u, v \rangle \geq 0\}$ w.p. $e^\epsilon/(1 + e^\epsilon)$, or
 - $\{u \in B_d : \langle u, v \rangle < 0\}$ w.p. $1/(1 + e^\epsilon)$.
 - If $\|x\|_2 = 1$, then $E(R(x)) = c_{\epsilon, d} \cdot x$
 where $c_{\epsilon, d} = \Theta(\epsilon/\sqrt{d})$.

Limitations of Local Algorithms
SQ algorithms and Local Privacy [KLNRS’08]

- Every SQ algorithm can be simulated by a LDP protocol.

- **Theorem:** Every LDP algorithm that assumes i.i.d. data can be simulated by SQ with \(q \approx n \) and \(\alpha \approx 1/n \).

- **Corollary** (via [Kearns’93]): No LDP algorithm can learn parity with polynomially many samples (\(n = 2^{\Omega(d)} \)).

- "Learn parity" \(\approx \) distinguish between \(n \) samples from either
 - Uniform on \(\{0,1\}^d \), or
 - Uniform on \(\{x \in \{0,1\}^d : x \odot z = 0 \mod 2\} \) where \(z \) is a secret in \(\{0,1\}^d \).

- **Theorem:** Centralized DP can learn parity with \(n = O\left(\frac{d}{\epsilon}\right) \) samples.
 - “Simpler” exponential separation now known [Duchi, Jordan, Wainright’13, Ullman’17]
SQ Algorithms simulate LDP protocols

• Roughly:
 Every LDP algorithm with \(n \) data points can be simulated by an \(O(n) \)-query SQ algorithm with

 ➢ Actually a distributional statement: assume that data drawn i.i.d from some distribution \(P \)

• Key piece: Transform the randomizer so only 1 bit is sent to aggregator by each participant

 ➢ Use rejection sampling to get right distribution

• Corollary [Bun, Nelson, Stemmer’18]: In the local model,

 \((\varepsilon, 0)\)-DP \(\approx\) \((\varepsilon, \delta)\)-DP
Information-theoretic lower bounds

- For local DP algorithms, easiest arguments use information-theoretic framework
 [Beimel,Nissim,Omri’10, Chan,Shi,Song’12, Duchi,Jordan,Wainwright’13]

 - Tight lower bounds for many basic estimation tasks

- **Theorem:** If A is (ϵ, δ)-locally DP, then
 $$E \left| A(x) - \frac{1}{n} \sum_i f(x_i) \right| = \Omega\left(\frac{1}{\epsilon \sqrt{n}} \right)$$

- **Idea:**
 - Suppose $X_1, \ldots, X_n \sim P$ i.i.d., where P is randomly chosen
 - Show that protocol leaks little information about P

Lemma: For every distribution on P,
$$I(P; Y_1, \ldots, Y_n) \leq n\epsilon^2$$
Main Lemmas

- **Lemma:** If R is ϵ-DP, then $I(X; R(X)) \leq O(\epsilon^2)$

- **Stronger Lemma:** If R is ϵ-DP, and
 \[
 W(x) = \begin{cases}
 x & \text{w.p. } \alpha \\
 0. & \text{w.p. } 1 - \alpha'
 \end{cases}
 \]
 then $I(X; R(W(X))) \leq O(\alpha^2 \epsilon^2)$.

- **To prove $1/\epsilon \sqrt{n}$ lower bound for counting query:**
 - Show that algorithm with error α leaks $\leq n\alpha^2 \epsilon^2$ bits
 - To estimate P, need to learn at least one bit
 - So error $\alpha \geq 1/\epsilon \sqrt{n}$
Selection Lower Bounds [DJW’13, Ullman ‘17]

- Suppose each person has k binary attributes
- **Goal**: Find index j with highest count ($\pm \alpha$)

- **Central model**: $n = O(\log(k)/\epsilon \alpha)$ suffices [McSherry Talwar ‘07]
- **Local model**: Any noninteractive local DP protocol with nontrivial error requires
 \[n = \Omega(k \log(k)/\epsilon^2) \]

 - [DJW’13, Ullman ‘17]
 - (No lower bound known for interactive protocols)
What about interaction?

- Simplest protocols have just 1 message
 - Q_i is known to player i at start of protocol
 - Called “noninteractive”

- But some protocols are interactive
 - Server might talk to each player several times
 - Server may choose Q_2 based on $Q_1(X_1)$

- Interaction is expensive
 - Latency
 - Aggregator must be online
Interaction is necessary for LDP

- [KLNRS08] For “hidden parity” problem, noninteractive LDP requires exponentially more data than 2-round LPD

 - Proof by separating adaptive SQ from nonadaptive SQ
 - Stronger separations now known [Feldman 2019, Joseph-Mao-Roth 2019]

- Is interaction useful in practice?
 - Known protocols for convex optimization use lots of interaction [DJW’13,STU ‘17]
 - Lower bounds known for a subclass of protocols [STU’17, McMahan, Srebro, S. ,Wang, Woodward’18]
Differential Privacy and Game Theory
Game-theoretic interpretation of DP

- Suppose that person i is deciding whether to contribute data to a data set.
- Different outputs of A have different **utility** to i.

 $$U_i = u_i(A(X))$$

- If A is (ε, δ)-differentially private, then

 $$\mathbb{E}(U_i | \text{person } i \text{'s data is used}) \leq e^{-\varepsilon} \mathbb{E}(U_i | \text{person } i \text{'s data is not used}) - \delta$$

- Implications

 - Participating in a study costs me little

 - *[McSherry-Talwar ’07]* Every differentially private algorithm is approximately truthful

 - Little incentive to misreport values
Digital Good Auction [MT ’07]

• 1 seller with a digital good

• n potential buyers
 ➢ Each has a secret value \(v_i \) in \([0,1]\) for song
 ➢ Setting price \(p \) will get revenue \(\text{rev}(p) = p |\{i: v_i \geq p\}| \)
 ➢ How can seller set \(p \) to get revenue \(\approx \text{OPT} = \max \text{rev}(p) \)?

• Straightforward bidding mechanism
 ➢ Each player reports \(v_i' = 0 \)
 ➢ Lying can drastically change best price

• Instead, sample \(p^* \) from \(r(p) \propto \exp(\epsilon \cdot \text{rev}(p)) \)
 ➢ Approximately truthful
 ➢ Expected revenue \(\geq \text{OPT} - O\left(\frac{\ln(\epsilon n)}{\epsilon}\right) \)
Economic Theory & Differential Privacy

• **Mechanism Design**
 - Twin goals
 - Incentive-compatibility
 - Incentive-compatibility via privacy
 - Exactly truthful mechanisms
 [Xiao'12, Nissim, Smorodinsky, Tennenholtz '12, Nissim, Orlandi, Smorodinsky '12, Chen, Chong, Kash, Moran, Vadhan'13, Huang, Kannan'12]

• **“Pricing” privacy** [Ghosh, Roth'12, Fleischer, Lyu'12, Ligett, Roth'13]
 - Can we reward survey participants who have different values for privacy?
 - Can we use prices to elicit values for privacy?
 - “Endogenize” ε?

• **How can private information change games?**
 - Equilibrium selection [Kearns, Pai, Roth, Ullman '14, Rogers Roth ‘14]

• **Sensitive information as a public good**
 - How can we decide how to use the privacy budget?

See videos of tutorials by
- Katrina Ligett at Simons Institute January 2019 “bootcamp”
- Aaron Roth at 2012 DIMACS Workshop on Differential Privacy
Law, Policy and Differential Privacy
From Law to Technical Definitions

Two central challenges

1. Given a body of law and regulation, what technical definitions comply with that law?
 - E.g., GDPR

2. How should we write laws and regulations so they make sense given evolving technology?
 - E.g., Surveillance ≠ physical wiretaps

- Technical research must inform these questions
 - E.g. “personally identifiable information” is meaningless

- [Nissim et al. 2016] Mathematical formulations play an important role
 - E.g. formal interpretation of FERPA (a US law) mirrors DP
 - “Singling out” in GDPR is challenging to make sense of
Adaptive Data Analysis
Overfitting

- **Inference**: Draw conclusions about \(P \) based on \(X \)

- **Overfitting / false discovery**: Conclusions that hold for \(X \) but not for \(P \)
Overfitting

- Decades of work on preventing overfitting
 - Cross-validation, bootstrap, multiple hypothesis testing, FDR control, …

- Designed for static data analysis
 - Assumes method selected independently of data
Overfitting

Population P

X A

data method

outcome

Static

Adaptive

Population P

X A_1 A_2

data

outcome 1

outcome 2
Adaptivity is common

The Statistical Crisis in Science

Data-dependent analysis—a “garden of forking paths”—explains why many statistically significant comparisons don’t hold up.

Andrew Gelman and Eric Loken

There is a growing realization that reported “statistically significant” claims in scientific publications are routinely miss-

This multiple comparisons issue is well known in statistics and has been called “p-hacking” in an influential 2011 paper by the psychology re-

How can we provide statistically valid answers to adaptively selected analyses?

American Scientist, 2014
Getting a Baseline

- Goal: Relate adaptive setting to statistical ideal worlds
- Understand how properties of algorithms A_1, A_2, \ldots affect that relationship
Privacy and overfitting

Folklore: Differential privacy don’t overfit

• Recent discovery: DP prevents adaptive overfitting
 [Dwork Feldman Hardt Pitassi Reingold Roth ‘15]

• Recent developments (my work and others…)
 ➢ Tight connection between DP and overfitting
 • Best known bounds on accuracy
 ➢ General information-theoretic framework
 • Unifies & generalizes known results
A few things I didn’t tell you about

• Other algorithmic techniques
  Local sensitivity, smoothed sensitivity, and Lipschitz extensions
  Subsample and aggregate

• PAC learning

• Different access models
  Continual release
  Local privacy
  Pan-privacy

• Computational notions

• Lower bounds
  Accuracy (sometimes via information theory)
  Computation time

• Programming tools
  New developments in type theory

• DP in practice
Conclusions

• Define privacy in terms of my effect on output
 - Meaningful despite arbitrary external information
 - I should participate if I get benefit

• Rigorous framework for private data analysis
 - Rich algorithmic literature (theoretical and applied)
 - There is no competing theory

• What computations can we secure?
 - Differential privacy provided a surprising formalization for a previously ad hoc area
 - What other areas need formalization?