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Computation over Multiple-Access Channels

Bobak NazerStudent Member, IEEBNd Michael Gastpalyiember, IEEE

Abstract— The problem of reliably reconstructing a function efficiently. This can be thought of as a form of passive
of sources over a multiple-access channel is considered. & cooperation between transmitting terminals. More prégise
shown that there is no source-channel separation theorem ex in the standard literature, cooperation is often consitiéme

when the individual sources are independent. Joint source-t f th lati d v, d d
channel strategies are developed that are optimal when the erms of the correlations (and more generally, dependence)

structure of the channel probability transition matrix and the it creates between transmitted signals, thus permitting it
function are appropriately matched. Even when the channel outperformthe communication performance attainableauith

and function are mismatched, these computation codes often cooperation. It should be clear that correlated signaly onl
outperform separation-based strategies. Achievable disttions result in improved performance if the correlation between

are given for the distributed refinement of the sum of Gaussia the si Is | iatel tched t ¢ f th
sources over a Gaussian multiple-access channel with a jain e signals is appropriately matched to tsteucture of the

source-channel lattice code. Finally, computation codesra used Multiple-access channel. In our considerations, the goabi
to determine the multicast capacity of finite field multiple-access longer to communicate messages, but a function thereof. By

networks, thus linking them to network coding. using appropriate codes, the transmitters cooperate tzeea
Index Terms— Distributed computation, joint source-channel an enhanced communication performance. Again, it should be
coding, lattice codes, linear codes, multiple-access, meirk cod- clear that this only results in a gain if the desired functi®n
ing, separation theorem. appropriately matched to theructureof the multiple-access
channel. In this paper, we provide a partial charactennadif
I. INTRODUCTION the necessary structural match.

Computation and communication are often viewed as dig- Rrelated Work

tinct problems. A communications engineer, tasked to desi L
P 9 9 Shannon showed in his landmark paper that separate source

a multi-user system for performing computations while tigci L . . . .
communication constraints, would almost certainly emploand channel code design is asymptotically optimal in a point
' -point setting [2, Theorem 21]. This insight has fueled a

a version of the “separation principle.” The system woulg " ) . )
employ a (distributed) source code to compress the souréeg' " philosophy based completely on bits. Although inynan

into bits and a channel code to losslessly convey these\ais oCAsEes of mtgrest, such an approa_ch 'S pptlmal,. itis wedlalm
that in certain scenarios separation fails. For instanowe€;

the noisy channel. The perceived reason for this design:ehotl Gamal, and Salehi demonstrated that separation is subop-
is two-fold. First, the abstraction of the sources and ckann), ' o .

. . . : . r}lmal for transmitting correlated sources over a MAC in [1].
to bits lends itself to a universal, modular design. Seccllnd’Their joint source-channel scheme uses the source cooredat
seems that the only gain from a joint source-channel design J ) e .

- ; & create channel input probability distributions unaafalié to
stems from exploiting the correlations between the souases . " X
a separation-based scheme. Exploiting the source cooredat

in [1]. . . L . . .
(4] in this fashion is sometimes known a®llaborative gain

In this paper, we study the problem of computing funcuon&hlswede and Han continued work on the problem of sending

over multiple-access channels (MACs) and show that in man ! :
! L ; . correlated sources over a MAC in [3]. In particular, they
cases of interest, a joint design can exploit a match betweén . . . .
; considered a variant of the problem in which only one of the
the structure of the channel and the function to be computed.
sources had to be recovered.

This structural gaindoes not hinge on the correlations be*- In [4], [5], an uncoded joint source-channel scheme is

tween the sources and, with a perfect matching, increases . A :
; . shHown to be optimal (and significantly better than sepanatio
the computation rateproportionally to the number of users

. for, estimating a remote source from multiple observations.
Fgrthe_rmore, our underlymg scher_n_es are modular and c_iep% ﬁlmugh at a first glance, the scheme seems to benefit only
primarily on chmg techniques originally developed foeith from the correlations between the observations, it alsdoésp
lower comple>§|ty._ : an ideal structural match between the channel, a Gaussian
Instead of f|gh'qng the mterfere_nce caused by other USE[FAC, and the sufficient statistic, the sum of the observation
our codes exploit channel collisions to compute func'uonlsnis uncoded transmission framework has been extended to

This work was supported by the National Science Foundatioden MOre general sensor net\{vork estimation problems in [6], [7]
CAREER Grant CCF-0347298 and NeTS-Prowin Grant CCF-062782 In [8], function properties are used to reduce the amount

well a Graduate Research Fellowship. The material in thiepa/as presented f required communication in a large sensor network. For
in part at the 43rd Annual Allerton Conference on CommuincgtControl

and Computing, Monticello, 1L, September 2005, at the IEBEemational  Many functions, the sensors can process incoming data be-
Symposium on Information Theory, Seattle, WA, July 2006] atthe IEEE fore sending it along to the fusion center, thus reducing the
International Symposium on Information Theory, Nice, E@nJune 2007. communications overhead.

The authors are with the Department of Electrical Engimgeend Com- . [ . .
puter Sciences, University of California, Berkeley, Béeke CA, 94720-1770, Reliable distributed computation has been studied from

USA (email: bobak@eecs.berkeley.edu; gastpar@eecslepedu) the source coding perspective. The general problem is still



TO APPEAR IN IEEE TRANS INFO THEORY, OCTOBER 2007. 2

open and seems prohibitively difficult with current techreg. Uncoded transmission is exactly optimal when the source
Korner and Marton found the rate region for distributed and channel bandwidths are equal. When there are more
compression of the parity of two correlated uniform binary  channel uses than source symbols, our codes continue to
sources in [9]. Their proof relies on randdmear codes and reap some of the gains of uncoded transmission.

their gains come entirely from the correlation between the« Through the study of a multicasting problem, we show
sources. The seeming necessity of linear codes for thislsimp  that computation codes are useful even when the eval-
problem implies that random coding techniques are inadequa  uation of functions is not called for in the problem

for the general problem. statement. Theorem 4 gives the multicast capacity of a
In [10], Orlitsky and Roche determined the required rate class of MAC networks. The MACs in the network are
for sendingX to a decoder with side informatidri that must basically noisy adders over a finite field. Computation

reliably computef (X, Y). This is essentially a generalization codes are used to harness these channels for part of the
of the Korner-Marton parity problem to any function except  overall network code.

that the decoder get® for free. The basic result is that in Appendix | gives inner bounds to the source Coding region
most cases of interest, we must sekidin its entirety to the for distributed computation. Some of these bounds rely on
decoder; further compression is only possible if for same conditional graph entropy results by Orlitsky and Roche in
andz’, f(z,Y) = f(2',Y) with probability 1. In many cases, [10] which are also summarized in the appendix. Upper
the gains enabled by requiring only a function of the sourcggunds on the computation capacity for a MAC appear in
at the decoder versus the sources themselves are marginghppendix Il. Note that some of these results were reported in
Earlier work by Yamamato established the rate-distortiaRe conference papers [19]-[21].

function for sendingX to a decoder that must reconstruct
f(X,Y) up to a given fidelity givenY” as side-information |,
[11]. In [12], the authors extend the rate-distortion fumietto
the case where only a noisy version &fis available at the

. PROBLEM STATEMENT: RELIABLE COMPUTATION

We explore distributed computation through a variation on
encoder the standard multiple-access problem. Our distributed-com

Recently, there has been a great deal of interest in netwdilation system (Figure 1) consists of thg following basic
coding [13]-[15]. The key idea is that routing is suboptimeﬁlememS: a set ofi Sources and a functlonf(-),. t.aken
for multicasting over networks: intermediate nodes mayyonfVer those sources, a multiple-access channel, a jointsour
need to send a function of incoming messages. For network<gnnel encoder for each source, and a decoder. We now give
point-to-point channels, network coding can be implerntiizntén"]‘themat'c""I definitions for each element.
separately from channel coding, i.e. there is a separation
theorem [16]. In more general scenarios, such as netwoaks th X
include deterministic broadcast channels, channel andarliet Si—1&
coding cannot be separated [17]. \

X N
Sy—s| &y =2 PY|X1X2...XML DU
B. Summary of Paper Results : : /
First, we will bound the performance of separation-based X
P P Sar—{ Ear A U= f(S1,52,...,5u)

schemes. For many functions, if the sources are independent

then the best a separation-based scheme can do is have each ‘ .

encoder send its source in its entirety. Our main theorems §I9- 1. Reliable Computation over a MAC. The decoder onhonstructs
. a function of the sources.

summarized below:

« Theorem 1 gives the maximum achievable rate (or com- o _ .
putation Capacity) for re“ab'y Sending linear functions Remark 1:We assume that time is discrete. This can eaSIly

over linear MACs. Essentially, we employ the same lined€ justified by the well-known fact that any continuous-time
source code and linear channel code at each encod¥stem with finite bandwidth can be reduced to a discrete-tim
When the codewords collide on the channel, the codewc?gstem with Shannon's sampling theorem [22, p.248-250]. In
for our desired function is computed. In many cases, tiR€arly any practical setting, finite bandwidth is assured.

gains over separation are proportipnal to the number of ysinition 1 (Sources)Let {(S:[i], Salil, ..., Snli])}e,
users even when the Sources are mdepem_jent. . be a sequence of independent drawings of an M-tuple of pos-
o Theorem 2 gives achievable rates for reliably senduggbly dependent random variables (n&). Ss, . . ., Sa; which

arbitrary functions over arbitrary MACs. Since codeword{%‘ke values in the alphabets,,Ss,
cannot always be reliably merged on the channel,
use a systematic scheme with an uncoded phase ang
separation-based refinement phase. This scheme outp
forms separation in some surprising cases.

« We use some of the recent lattice constructions from [1
to create lattice computation codes for sending the sum ofRemark 2:We use superscripts to denote vectors of rvs.
Gaussian sources over a Gaussian MAC with TheoremRor example, U* = (U[1],U[2],...,U[k]) and X} =

..., Sy, respectively.

e random variables are drawn according to the probability
idtribution function (pdf)ps, 5550, (1582, ..., Spr). AS a
fiGrthand, we sometimes write the pdf@ss,..s,, . Also,

\é\ﬁe may sometimes write the M-tuple of sources as singply
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(X;11],X,[2],...,X;[n]). To simplify notation we may also that our framework is general enough that through proper
denote a vector with a bold, lowercase version of the randaelection off(-) it can become the standard multiple-access
variable, where the length can always be inferred from ocdnteproblem [22, p.388-407] as well as the multiple-access with
For examplen = (U[1],U[2],...,U[k]). correlated sources problem [1].

Definition 2 (Desired Function)Letl/ be a discrete alpha-
bet andf a fixed many-to-one function:

f:Sl XSQX"'SM_)Z/{.

We will refer to f as thedesired function

Definition 7 (Computation Capacity)Thecomputation ca-
pacity is the supremum of all achievable computation rates.

1)

IIl. SEPARATION-BASED COMPUTATION

In this section, we formally define what we mean by

Remark 3:We may want to recover more than one functiod Separation-based scheme for computation over a MAC.
of the sources at the decoder. This can easily be accomnibdd@ormally, a separation-based scheme consists of a set of
in our framework. For instance, we can defifidrom (1) to Source encoders and channel encoders as well as a source

have a vector output with each element corresponding to t#gcoder and a channel decoder. Each source encoder must

output of a single function.
Definition 3 (MAC): There is a conditional pdf
)

with z; € &X;, j € {1,2,..., M}, andy € Y. We will refer to
the X; as thechannel inputspy|x, x,...x,, as themultiple-
access channdMAC), andY as thechannel output

Py | X1 XX (ylo1, z2,. . Tar)

Definition 4 (Computation Code)A (k,n, €) code is spec-
ified by M encoders

£ 8] — &, (3)
forj =1,2,...,M, as well as adecoder
D:Y" —u", )
such that:
X = £(S})
Uk =DY™)
Pr(U* # U*) < e (5)

output a representation of its source in bits. Given these bi
representations of the sources, the source decoder mustebe a
to reconstruct the desired function with a vanishing prdigb

of error.

Definition 8: The distributed compression rate regipR ¢,
is the set of all rate vector&R;, Rs, ..., Rys) such that for
all e > 0 and k large enough there ar® source encoders
and a source decoder of the form:

S . ck kR;
& 87 —{0,1}
DY {0, 1}FF x - x {0, 1} — ik,

(7
)
for j = 1,2,..., M such that the desired functioi =
f(S1,89,...,5y) can be recovered with probability of error
at moste:

PrU* #U*) <e. 9)

Unfortunately, as of the writing of this paper, there is no
single letter characterization for distributed compressif an
arbitrary many-to-one function. Kdrner and Marton soltee

Definition 5 (Average Cost)Each encoder may be subjecspecial case where there are two correlated, uniform, pinar
to anaverage cost constrairdver a block specified by eost sources and we want to recover their parity [9]. See Section
function p;(z;): IV-D.1 for more details. Orlitsky and Roche solved a related
problem where a decoder must recover a function of the source
and a side information random variable [10]. The requirdd ra
is given by a graph entropy characterization and is reviewed
in detail in Appendix I-A. We will use their result to estadii
the distributed compression rate region for a restricteg<l
of functions with independent sources as inputs. Esséntifal

Remark 4:The cost constraint can be used to model arftp input symbols can be merged without incurring errors and
restrict energy consumption at the encoders. Note that #B€ sources are independent, then the sources must be sent in
specifying a cost constraint is equivalent to assigningstimae  their entirety.
cost to each input symbol.

pj X — Ry

n 1 .
pi(f) =~ > i) €Ty, TjeRy, (6)
=1

forj=1,2,..., M.

Lemma 1:Assume that the sources are independent and

Definition 6 (Computation Rate)We say acomputation the desired functionf, is chosen such that for each pair of
rate, x = %, is achievable ifve € (0,1) there exists a Possible source symbols at an encoders; € S;, there is a
(kn,n, €) code for somer € Z, . choice ofsy, s2, .. ., 8p such that:

<y 8j—1,85+1, - -

Remark 5:The computation rate is where we break with Pr(f(s1,..., 85, ...,sm) # f(s1,...
the _standard information theoretic f_ramework. Usually, "$hen, the rate required for each decoder for distributed-com
require that all)M/ sources be transmitted across the chann&lession off(-)is R; > H(S,)
losslessly. Here, we only penalize ourselves when the ifumct 7= 7
U = f(S1,852,...,5u) is incorrectly evaluated. Also note See Appendix I-A for a proof.

185,y 8m)) > 0.
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Example 1:Let S1,S3,...,Sy be independent sourcesof this MAC is clearly Cy,. = 1. At the decoder, we would
drawn uniformly from the same alphabet. Then, real additiolike to losslessly comput& = S; & S,. Using Lemma 1 and
Ui = ij\il S;, and multiplication,Us = S; - Sz -...- Sy, the data processing inequality, it can be shown that the best
satisfy the conditions of Lemma 1. separation-based scheme achieves a computation ratg ef

1
The distributed compression rate region for complete r§h
covery of the sources was characterized by Slepian aﬁ
Wolf in [23]. Their classic result shows that the distrildite
encoders need only the sum rate of a joint encoder. T
Slepian-Wolf rate regionR s, is the set of all rate vectors,
(R1, Ra, ..., Ry), satisfying: As the example demonstrates, sometimes we can compute
R(T) < H(T|TC) ¥T CS, (10) the desired function using the Ch_annel. In thes_e caseg, join
source-channel schemes can achieve a much higher computa-
where R(T) = . ¢ R; (see [22, p.415, Thm.14.4.2]). tion rate than separation-based schemes, sometimes a facto
Ahlswede and Liao concurrently determined the MAC caf M higher. Of course, the above example is somewhat
pacity region for independent messages [24], [25]. The MACbntrived, as the channel performs exactly the operation we
capacity regionRuy.c, is the closure of the convex hull of thedesire. Furthermore, the channel is not noisy, so intemnfere
set of all rate vectorg,R1, Rs, ..., Ryr), satisfying: is the only issue. Our results show that using the channel's
natural operation to compute a function can give us booss ov

The separation-based scheme just amounts to using two
annel uses, one for each source. However, simultaneously
cing the sources on the channel (or uncoded transmjssion
chieves a computation rate a&f,,r = 1 which is clearly
Eﬁtimal by the data processing inequality.

) c
R(T) < I(X(T); Y|X(T™)) YT CS, (11) separation-based schemes, even when the channel is noisy.

for some product distribution p(zy1,xo,...,zn) =

Hj]\ilp(xj) where X(T) = {X; : j € T} (see [22, IV. LINEAR COMPUTATION CODING

p.403, Thm.14.3.5]). In this section, we develop a class of MACs for which we

Definition 9: The maximum sum ratef a MAC is: can find the computation capacity for linear functions.
M
Cunc = max R;. (12) A. Definitions
(R1,Rz2,...,Rnm)ERMAC “— . R .
i=1 Our achievable rates coincide with our upper bounds when
Definition 10: We say that the maximum sum rate of dhere is an ideal structural match between the channel and th
MAC is symmetricif R} = R; = --- = R}, where desired function. More specifically, we require that our MAC
M can be written as a linear function over a finite field of its
(R',R;,....Riy) € arg max R;. (13) inputs foIIc_)wed by a_symmetrlc discrete memoryless channel
(Ri,Ra,.oo Rar) €Ruac 51 (DMC) as illustrated in Figure 2. Furthermore, there musabe

) ) o one-to-one map from our desired function to a linear fumrctio
A separation-based code consists of a distributed comprgsa; the same finite field. If these conditions are met, there

sion code concatenated with @ MAC code. Note that in magy 5 joint source-channel code that achieves the compatatio

cases, we will choose a ratio of source symbols per chanpghacity. In these perfectly matched cases, separatisedba
use such that the two rate regions intersect and commuoncalichemes will fall far short of the optimal performance. For

is possible. many of these scenarios, such as sending a sum over a noisy
Definition 11: A computation rate: = £ is achievable with adder (as in Figure 2), the gap will be proportionalltt the
separationif: " number of users.
R R B
RMAC(K):{(—H...,—M) :(Rl,...,RM)eRMAC} < 1
K K 1
S1—| &
Rf N RMAC(KJ) 7é (Z) (14) ﬁ
1
As shown in [1], when we want to send correlated sources Yy Us
over a MAC, separation is not optimal. Clearly, if we allow S2 _’|: Pyiw @_’ :
our sources to be correlated but only require a function of U
L

these sources at the decoder, a separation-based scheme may
not be optimal for the same reasons. However, even if we
assume that the sources are independent, we still do not getg |
separation theorem as shown in the following example, taken

from Problem 1.1 in [26].

] Fig. 2. Discrete Linear Multiple-Access Channel
Example 2:Let S; and Sy be mdependenB(%) sources.

Each source is seen by a separate encoder with access to one
terminal of a MAC. The MAC input alphabets a#g = X5 = Definition 12: We call a MAC linear with respect toF if
{0,1} and the output i¥” = X;® X,. The maximum sum rate its channel inputs take values on a Galois fildand we
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can represent the channel outpltas coming from a discrete  Corollary 1: Lemma 3 also holds for asymmetric DMCs
memoryless channel (DMCpy- |y, Where: so long asC, the channel capacity, is replaced wittiv; Y)
wherep(W) is taken to be uniform.

M
W= Zﬂij (15)  Theorem 1:Let f1, fo,..., fz be linear functions with re-
j=1 spect toF and letU, = f¢(S1,52,...,5:). For a linear
for someg; € F\ {0} where0 is the zero symbol iff. Note MAE with respec.t tolf with symmetricpyy and capacity
that addition and multiplication are performed owerAlso, € = max,() {(W:Y),

note that if anyg; could take a zero value, then that encoder C
would effectively have no channel input. See Figure 2. k= H(Uy,Us, ..., UL) (16)

In [27], it was shown that linear codes are sufficient fois the computation capacity for the vector of desired fuorj
achieving the maximum sum rate of a linear multiple-accegs= (U, U,,...,Ur).
channel. Proof: (Achievability) Using Lemma 2, we choose ma-
We will also need the following definition from [28, p.94]:trices Hy, Ho, ..., Hy, of size k x m,, respectively, to get

L ] . . (U1,Us,...,Ur) to some pointin the Slepian-Wolf rate region
Definition 13: We say that a DMC issymmetricif the with sum ratef (U, Us, ..., Uy).

ougputt T%mbolsbcg_l?_tbi plac_:tgd Into tsgbsettsf_suc?hth;‘;;or eac sing Lemma 3, we choose a matriG of size
subset the probability transition matrix satisfies the g (ZeL:lml) x n to communicate ovepyy at capacity. We

two conditions: note that eaclt; has a multiplicative inversgj_l.

1) Each row is a permutation of every other row. At each encoder we use the following encoding rule:
2) Each column is a permutation of every other column.

i o t; = [a18;H1 oys;H2 -+ ap;s5Hy,
Remark 6:1t can be shown that the uniform distribution ! [ﬂ‘itJG 7 SyH
Xj = . j .

achieves capacity on symmetric DMCs [24], [29]. This coricep J

can also be extended to channels with discrete inputs anchfter the linear operation performed by the channel, we get:
continuous outputs such as the binary-input Gaussian ehann

However, in the interests of space, we limit ourselves to w = X1 + fax2 + - + SfuXm

discrete alphabets. w = [u1H; u2Hs -+ uHy]G.

The received sequencey, is just w corrupted by
B. Results symmetric noise. Using Lemma 3, we can recover
) o _ _ LulHl u2H, --- uHy] from y for any block error proba-
co\c/j\'/ﬁ V\EgIO]need a result by Csiszar for linear Slepian-Wol i"Fy ¢ > 0 for n large enough so long aEle My < %.
ing . Using Lemma 2, we can recovaiy,us,...,u;, for any

Lemma 2 (Csign): Let (Ui,Us,...,UL) be a vector EL?(CJ(] ’S£r9.fUpi:§)bab|l|t¥e > 0 for k large enough so long as
source generated i.i.d. according to some joint probabibigs —— Tog x|~ < 21 M (and the appropriate side rate
function (pmf) on a discrete alphabet. For any point in theonstraints are met). This succeeds with probability great
Slepian-Wolf rate region anidlarge enough, there are matriceh@n1—e for k large enough so long & (U, Uy, . .., Ur) <
H,,H,, ..., Hy, of sizek xm,, respectively, taking values over"C- ) _

a Galois field with associated decoding functigr) that can (Conversg For this class of MACs, we can simply allow

be used to compress the sources in a distributed fashion vifi§ encoders to completely collaborate and get a tight upper

PI((UF,US,...,U}) # (Uf,US,....Uf)) <e Ve>0. bound. This reduces our problem to a point-to-point prob-
lem and we can invoke the separation theorem to get that

The proof relies on showing that multiplying by a random H (U, Us, ..., U) < nC. It immediately follows thats <
matrix is equivalent to random binning. For a full proof, se% [ ]

[30]. The following lemma appears as Problem 2.1.11 in [31].( Bz U) o ) ) )
If our MAC is linear but its DMC is asymmetric, we can

Lemma 3:Consider a symmetric DMC with encoder inputise the strategy used in Theorem 1 to give an achievable
W, channel inputX, channel output’, and capacityC. Both computation rate.
W and X take values on Galois field’. For anye > 0 ) ) )
andn large enough, there exists a mat@ € X" with Corolla_ry 2. If Py|w I8 asymmetric the_n the following
associated decoding functiart-) such that wherx = wG, computation rate is achievable for sending our vector of
Pr(c(y) # w) < e if mlog|X| < nC. desired linear functiongU,,Us, ..., UL):

The basic proof idea is that using a random generator matrix = I(W;Y) (17)

results in pairwise independent codewords whose entries ar H(Uy,Us, ..., Ur)

i.i.d. according to a uniform distribution. See [28.2] for whereI(1W;Y") is evaluated using a uniform distribution on
the binary case. w.
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Remark 7:Theorem 1 can be easily extended to functiorinduces a mutual information of. We get thatise, = %ﬁ

that have an invertible, entropy-preserving map to lineacf from Lemma 1 and thakcowe = %ﬁ from Corollary 2. In
tions. this scenariofge > keowe- The best upper bound we have on
: o the computation rate is,on = — using Lemma 12.
If the sources satisfy the conditions of Lemma 1, then we P ONT ™ Tog 5 9
must transmit them in their entirety to reconstruct our ig@si  This shows that the channel symmetry condition cannot be

linear functions with a separation-based scheme. Thys= removed from the statement of Theorem 1. Unlike the point-

SBRTER) ICH(S],) is the highest computation rate achievable wittb-point setting, we are not free to create a linear code and
J= . .
separation. By Theorem ko = H(Ulc_ 7y is the optimal map different length subsequences to channel inputs uleven

to achieve any distribution (see [28, p.208]). The disteiu

. UL
computation rate. IfH(Ul’.' 2 UL) < ZJ:l.H(SJ)’ then nature of computation codes prohibits this kind of nondine
Kser < Keowp- FOr €xample, if the sources are independent arr]na N

our desired function is simply their sum, then the condgion bpINg.

of Lemma 1 are satisfied an® (U) < Zj]\ilH(Sj) S0
Ksep < Ficowr- D. Extended Example: Mo2l-Adder MAC

) We now explore an example to illustrate some of the key
C. Simple Examples principles at work in computation coding. Our example cente
Our strategy, computation coding, is optimal for linea@n the mod-2 adder MAC (M2MAC) (Figure 3). All operations
MACs when py |y is symmetric. If pyy is asymmetric, are done in GF(2). There are two sourcgsand.S,, generated
computation coding performs better than separation in soriem the following joint pdf:
cases and separation performs better in others. We show this

1—
by means of two examples. In the first, computation coding Pr(S; =0,5, =0) = Pr(S; =1,5=1) = Tp
outperforms separation. P
Pr(Sl =0,5 = 1) = Pr(Sl =1,5 = O) = 5 (18)

Example 3:Let S; and Sy be independenB(%) sources.
The channel inputs,X; and X,, also take values on A simple calculation will show thaf; and S, have uniform
{0,1} and the channel outpufl’, is formed by passing marginal distributions. Our goal is to losslessly transbhit=

W = X; @ X, through an asymmetric DMC whoseS; @ S, across the channel at the highest computation rate
probability transition matrix is given by the following tlgh x = % The entropy ofU is given by the binary entropy
function:
PY =yW=w) |y=0|y=1
w=0 0.9 0.1 hg(p) = —plogp — (1 — p)log (1 — p). (19)
w=1 0.5 0.5

Note that all logarithms in this paper are in ba@s&he channel
We \{vant to sendU = 51 @ Sy over the channel. The j,nt and output alphabets are identically giventyy= X, —
MAC’s maximum sum rate iCy,c = 0.148 whereas the ) _ {0,1}. The channel inputs are added mod-2 to yield
mutual information induced by a uniform distribution0id47. 3, _ X, @ X, which is passed through a binary symmetric

We get thatkse, = 0.074 by Lemma 1 andicowr = 0.147 By channel (BSC) with crossover probabilityto give Y (see
Corollary 2. Note that the achieved computation rate 'Se:loftigure 3).

to the upper bounds,o = 0.148, from Lemma 12.

We now give an example with an asymmetric DMC where S, ?1 X1
separation outperforms computation coding. [ \ W v
] . b— BSCq —>|Z|—»U
Example 4:Let S; and S> be independent sources drawn — x /
uniformly over GF(5). The channel input&; and X5, also So &y =2

take values on GF(5) and the channel outputjs formed by —
passingV = X; @5 X, through an asymmetric DMC whose _
probability transition matrix is given by the following tab Fig- 3. Mod-2 Adder Multiple-Access Channel (M2MAC)

PY=yW=w) |y=0|y=1 1) Separation: Krner-Marton Revisited:Our sources and
w = 1 0 desired function are identical to those from the Kornerridia
w=1 0.5 0.5 problem [9]. By combining the Kérner-Marton source coding
w=2 0.5 0.5 scheme with an appropriate MAC code, we will get the optimal
w = 0.5 0.5 separation-based scheme.

w =4 0 1

Lemma 4 (Krner-Marton): S; and S, are separately en-
We want to sendU = S; &5 S2 over the channel. The coded by two source coders at ratRg and R,. The mod-2
MAC’s maximum sum rate i), = 1 and is achieved by sum,U, can be reconstructed with (I%ff’C #+ U’“) <e€ Ve>0
only using input symbol®) and 4. A uniform distribution iff Ry > hp(p) and Ry > hp(p).
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For the M2MAC, the capacity region has only a singland a suboptimal separation-based scheme that uses Slepian

constraint:

Ri+Ry<1-— hB(q).

Note that this implies that time-sharing is optimal for théhe best separation-based scheme take advantage of tbe stru

M2MAC.

(20)

Wolf source coding over an M2MAC with crossover proba-

bility ¢ = 0.1 are shown in Figure 4.
3) Discussion: Both our computation coding scheme and

ture of the function for source coding. The computation ogdi

We can now give the best possible computation rate avatcheme goes one step further and takes advantage of seructur
able using separation. The sum source coding rate requiﬂic?ha”nel- The computation rate is doubled by this strattur

is 2hp(p) and the MAC sum capacity is— hp(gq). Reliable

communication requires th&(2hz(p)) < n(1—hp(g)). This

gives the optimal separation computation rate of:

b (t52).

Remark 8:The K'c'>rn_er—Marton scheme aIIqws for a strictlm is only known to be optimal for the symmetric pdf in (18),
lower sum source coding rate and thus, a higher computati@gthis is the most general pdf that results in uniform mailgin
rate than Slepian-Wolf coding &f; and Ss.

2) Computation CodingThe best separation-based sche
for the M2MAC uses structured source coding to exploit the
source correlations. The channel coding strategy focuees g
avoiding the interference caused by the other user. Yet,
interference is due to the summation taken by the MA
Computation coding exploits this summation by using bo
a structured source code and a structured channel code.
doing so, it can optimally exploit both the source correlas
and the structure of the MAC. An application of Theorem
to this scenario yields the following corollary.

(21)

gain. This shows that the MAC rate region is an insufficient
characterization of the channel for distributed compatati

The symmetric source pdf (see (18)) used for the M2MAC
example can be changed to any joint pdf and the computation
capacity will still be achieved by the scheme put forth in
Theorem 1. However, for an asymmetric pdf, the Korner-
Marton scheme may not be the best separation-based strategy

pdfs. Ahlswede and Han showed that if the marginals are not
uniform, there are achievable points outside the Kornartbh

me

region [3].
To be more specific, both the Kdrner-Marton scheme and

& desired function. Kérner-Marton fails as a generaltsoh

gp?mputation coding calibrate their codes using the entafpy

gs it then converts the linear representation into bitsclvhi

d?ﬁtroys the code’s match with the function. The function-
channel match in computation coding allows for a continuous
bstraction of the problem in terms of the underlying finite
ield. This is why we are able to meet our upper bounds in
matched cases.

Corollary 3: The optimal reliable computation rate for The mostinteresting aspect of our strategy is that it depend
sendingU = S; @ S, over the M2MAC is

. hp(q)
hp(p)
1.2
11 —— Computation
- - - Separation
! -+ Slepian-Wolf
¥ 0.9
2
S 0.8f
c
2 0.7}
s
2 0.6f
€
o \
O 0.5f
AY
A
04f R
03[ e TNmen L eeallerT
02 L L L L
0.2 0.4 0.6 0.8

Source Correlation, p

(22)

Fig. 4. Comparison of schemes for computing parity over ayaiodulo2

adder MAC (M2MAC).

entirely on codes that were originally intended to reduce
system complexity. Elias’ random linear coding proof was
meant to show that the search for implementable codes is
not futile; all of the benefits of Shannon’s random codebooks
can be transferred into random generator matrices [32]. The
Korner-Marton result and our computation code show that
structured codes can enable rate gains. In particulactsned
codes allow redundancy to be added in a distributed, yet
structured, fashion.

Symmetric, linear MACs seem to be the largest class of
MACs for which our computation codes are optimal. In
the next section, we explore strategies for sending arkitra
functions over arbitrary MACs.

V. SYSTEMATIC COMPUTATION CODING

We now develop computation codes for sending arbitrary
functions over arbitrary MACs. Our main idea is to use
uncoded transmission followed by an update phase, which can
be thought of as a systematic code.

A. Arbitrary Functions over Arbitrary MACs

In the point-to-point setting, systematic transmissicfense
to first sending a block of the source uncoded across the

Somewhat surprisingly, this strategy allows for a compwhannel and then using a code to refine the noisy version of the
tation rate twice that of the separation scheme, regaradiesssource [33], [34]. The decoder uses the uncoded block as side
the source statistics. The computation rates for commutatinformation to infer the source from the received codeword.
coding (Corollary 3), the best separation-based schemg (2Rystematic transmission is a good framework for the digital
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upgrade of analog systems. We propose a systematic cdfach encoder then transmitsto the decoder using a multiple-
putation coding scheme that first uses uncoded transmissémtess channel code:

to send a noisy function to the decoder and then refines this
function with a separation-based scheme.

We briefly consider the code used in Section IV-D fofargeted at the symmetric maximum sum raf&,.. Choose
sending the parity of binary sources over the M2ZMAC. Assume < o \we can recoverr;.ro.....ry at the decoder

the sources are independent and the channel code is writjgf, probability of error less tharg for n large enough if
in systematic form. This computation coding scheme is also

L .
systematic in that the encoders first send a noisy versiomeof ?Og IF] 2 =1 me < nCiuc. The decoder then computes:
desired sum and then refine it with parity-check bits. In this
setting, we allow the channel to merge both the information W=r1+T2+ - +1IMm
bits and the parity-check bits to give a codeword that dbssri
the sum of the sources. However, for an arbitrary MAC, we
may not able to use the channel to combine our codewordgere addition is overF. Using Lemma 2, we can re-
Therefore, we only use a joint source-channel code to secavervy,vs,..., vy from w andt with probability of error
a noisy version of the function. We will then switch over tdess than$ for mi,mo,...,my large enough that satisfy
a separation-based scheme that uses a linear source coder@nd/, Vs, ..., Vi |T) < log|F| Zngl me (and the appro-

a capacity-achieving MAC code at each encoder to refine thgate Slepian-Wolf side rate constraints are met). Fjnall
noisy function. we apply the functiongl;, ds, ..., d;, to recover our desired
function sequences; , us, . .., ur,. The probability of error is
upper bounded by.

The uncoded transmission phase requiteshannel uses
and the refinement phase requires at Idat 0122 V2 IT)
channel uses. Thus, we can achieve any computation rate

ch X me X,

W = [V1H1 voHy - VLHL] ’

Theorem 2:Let fy, fo,..., fr be arbitrary functions and
let Uy = fi(S1,...,S5m). Choose a Galois field, linear
functions g1, g2, ...,g9r overF and mappings;; : S; — F
forj=1,...,M anddy,...,d such that:

Pr(dl(gl(cl(sl)v"'7CM(SM))) = fl(Slv"'aSM» =1 SatISfymg:K: % < CMAC-Q—]\'IH(C\’\/A:CVL...,VL\T)' u
for ¢ = 1,2,...,L. Let V; = go(c1(S1),...,car(Sn)). If Remark 9:In some cases, we will haved(S;) <
the maximum sum rate of the MAC is symmetrithen the H(Vi,Va,...,Vz|T). In this case, encodgrcan just send;
computation rate in its entirety to the decoder to lower the overall compotati

o rate.
K MAC (23)

Remark 10:We can recover the classical MAC capacity
region by settingl = M and settingU; = S; for j =

" Cume + MH(V1, Va, ..., VL|T)

is achievable for any joint pdf of the form:

1,2,..., M. These sources are independent and take values on
M the input alphabets of the MAC. Their marginal distribugon
PrIXy X (ElT1, - Tr) prj‘sj (zjls;) | - assigned by the maximum sum rate achieving distribution for
j=1 the MAC.
o (Psiesa (51500 8m))  (24) Remark 11:Theorem 2 can be further generalized by al-

lowing for a different ratio of source symbols to channel
symbols in the uncoded phase. As it is currently stated,
PrIxy X (ElT1, ) = Py xgexa (2, 2ar) Theorem 2 uses one channel symbol per source symbol in
the uncoded phase. This causes the computation rate to be

where

Proof:  First, let Cy; = «¢4;(S;) and let 'V, = upper bounded by.
gg(Czl, ey CgM).
(Uncoded Transmission At time stepi for 1 < 7 < k, Corollary 4: If the mappingsdy,...,dr in Theorem 2 are
encoderj mapsS;[i] into a channel inputX;[i], according invertible and entropy-preserving, thei(Vy,...,V.|T) =
to px;s, (z;]s;). The decoder collects the channel outputs t& (U1, ..., U|T).

use as side information in the next pha®é,= Y'*.
(Refinement Using Lemma 2, we choose matrice?O
H,,H,,...H;, of size k x my, respectively, to get

We show that systematic computation coding can outper-
rm separation-based coding with the following example.

(V1,Va,..., V) to some point in the Slepian-Wolf rate region Example 5:Our setting is basically the same as the
of (Vi,Va,..., Vg, T) with sum rateH (V1,Va,...,VL|T).  M2MAC (see Section IV-D). For simplicity, we maks and
At each encoder we compute: S, independent3(3) processes. The only difference is the
channel performs a real additiohly = S; + S, and then
I‘j = [aljclel Oéngszz OéLjCLjHL].

noise is added mod-3 to get the outpkt:= W @3 Z. The

L , _ o additive noiseZ is distributed according t&’(Z = 0) = .8
We assume that maximum sum rate of the MAC is symmetric agupitd

Definition 10 to simplify the statement of the theorem. Thas de removed and P(Z = 1) = P(Z = 2) = .1. Our desired fungtion is
for a more general (but more cumbersome) theorem statement. the parity of the sourced/ = S; @& So. We would like to
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apply Theorem 2 for computing. In the first phase, we just i
transmit the sources uncodegk( s, (z;|s;) = 6(z; — s;)) to

get side informatior” at the decoder. The conditional entropy 09
of our desired functionl/ = S; & Ss, is H(U|T) = 0.60 and

the maximum sum rate of the MAC S, = 0.66. With this
method, we can achieveqy = 0.35. From Lemma 1, we get
that the best separation-based scheme gives a computaion r
of keer = 0.33. Interestingly, we can outperform our systematic
scheme by using the quasi-linearity of the channel to merge
codewords. We simply employ the computation code for the sl
M2MAC from Corollary 3 directly and map the output symbol
2 to 0 at the decoder. This gives us an improved computation 0 05 06 07 o8 oo
rate ofx = 0.40. None of these schemes meet the upper bound a, where S, ~ B(a), S, ~ B(a)

given by Lemma 13k, = 0.66.

‘I

'

' —— Computation
\ - - - Separation

o o
~ ©

o
o

Computation Rate, k

. Fig. 5. Computing parity over a binary multiplying channel
The above example shows that our systematic scheme can

be beaten by other strategies. In this case, we mapped our
problem into an M2MAC problem. In general, we can take an
arbitrary MAC and map it to a linear MAC in order to employ
a computation code.

In the next example, we compute the parity of independent
binary sources over a binary multiplying channel.

T
\ 1
1 1
\ 1
1 ]

—— Computation

- - -Separation D

Computation Rate, k

Example 6:5; and S, are B(«) sources. We are interested
in sending the mod-2 suny = S; ® S, over the binary
multiplying channel (BMC)Y = X; - X, where &} =
X> = {0,1}. In the first phase, we send the sources uncoded
across the channel and in the second phase, we use a MAC %841 02 03 o024 05 06 07 08 09
code to send our update bins. The computation rates for both a, where S, ~ B(a), S, ~ B(a)
separation-based coding (Lemma 1) and our scheme (Theorem
2) are plotted in Figure 5. The upper bound is significantly
higher than both achievable rates and is not shown on the
plot. Our scheme outperforms separation-based coding: for
between approximatel§.65 and0.85 (and betweer.15 and ~ Example 8:5; andS; are independent sources drawn uni-
0.35 by symmetry). The underlying reason is that these inpfarmly from {0, 1,2}. We would like to know whether or not
distributions get close to the maximum mutual information f S1 and S» are equalU = 1(S; # S2). We can losslessly
the MAC, resulting in good side information for the seconfecoverU from the linear functionV = S; &3 25> over
phase. It is quite surprising that our scheme even modgrat@F(3). The channel is jusiV = 1(S; # S2) followed by

outperforms separation as there is almost no structurathma@ BSC with transition probability.1 to give Y. We employ
between the channel and the desired function. Theorem 2. Our uncoded phase uses the sources directly; ther

is no remapping. In the update phase, we s&ndNith this
The following example is the dual of the last one: We&trategy, we get a computation ratesef,» = 0.194. Lemma
compute the product of binary independent sources over agives that the best separation-based computation rate is
mod-2 adder. kser = 0.168. Finally, using Lemma 13 we get an upper bound
of Kyonr = 0.578.

Fig. 6. Computing a binary product over a mdddder

Example 7:5; and S, are independenf(«) sources. We
want to send = S; - S, over a mod2 adder. The channel
output is given by = X; & X,, X = A, = {0,1}. We can
losslessly recovet/ from V' = S; &3 S3. Our scheme is to . .
sendS; and S, uncoded over the channel for phase one aan Detailed Example: Simple Sensor Network
then use this as side information to seridThe computation
rates for both separation-based coding (Lemma 1) and Q

scheme (Theorem 2) are plotted in Figure 6. Again, the up hC. By using a systematic computation code, we can

bound is significantly higher than both achievable ratesismdb(,jmnCe between using the structure of the MAC té) compute

not shqwn on the p_lg)lt. Althoug_h _the gains are marginal, thﬁl}nctions and applying the optimal input distribution. The

any gains are possible Is surprising. former is achieved in the uncoded phase and the latter is a
The next example demonstrates that there exists cases wiiggllt of the separation-based update phase.

computation coding is useful for sending a non-linear fiomct  There areM sources, each drawn uniformly and indepen-

over a noisy non-linear channel. dently from{—1, 1}. The encoders must satisfy average power

We now give an example that demonstrates the usefulness of
stematic computation coding for computing over a Gaunssia
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N =0.25 N=1 N =10

M COMP SEP UPPER || COMP SEP UPPER || COMP SEP UPPER
2 0.8663 | 0.7925 | 1.0566 0.3555 | 0.3962 | 0.5263 0.0458 | 0.0658 | 0.0877
10 || 0.7200 | 0.2679 | 0.9898 0.1692 | 0.1730 | 0.6391 0.0222 | 0.0500 | 0.1847
20 || 0.6583 | 0.1585 | 0.9882 0.1307 | 0.1098 | 0.6846 0.0161 | 0.0396 | 0.2471
30 || 0.6226 | 0.1153 | 0.9883 0.1138 | 0.0826 | 0.7077 0.0132 | 0.0333 | 0.2857
40 || 0.5972 | 0.0916 | 0.9885 0.1036 | 0.0670 | 0.7224 0.0114 | 0.0290 | 0.3131

TABLE |
COMPUTATION RATES FORRELIABLE SUMMATION OF BINARY SOURCES OVER AGAUSSIAN MAC

constraints: alphabet. A more natural problem to consider for the Ganssia
1 MAC is summing Gaussian sources with a mean-squared error
o Z zli]? <1 (25) criterion. In the next section, we develop a computatiorirgpd
i=1 scheme based on lattices for this problem.

for j =1,2,..., M. The channel output is just the sum of the

channel inputs plus independent Gaussian noise: VI. LATTICE COMPUTATION CODING
M Channel structure can also be exploited for communicating
Y[i]| = Z X[ + Z]i], (26) continuous-valued functions over MACs. One natural exampl
j=1 is sending the sum of Gaussian sources over a Gaussian MAC.

where { Z[i]}2, is an ii.d. Gaussian sequence with mean Here, as in the finite field case, we can use the addition
and variancéff. We would like to reliably compute the reglP€rformed by the MAC to our advantage with structured codes.

sum of the sourcel — ZM S. at the decoder. This exampleour problem statement is nearly identical to that in Section
can be viewed as a simf)l:el sénsor network model. except that we are willing to tolerate some distortion in our

For the uncoded part of our scheme, we simply plug tf§constructed function.
sources in as channel inputs and collect the channel oudputs
the decoder ag”*. ChooseF such thatF| > M. Letc;(s;) = A. Problem Statement
w Vi andg(by,ba,...,bar) = b1 Bba P - - B by Where Each encoderf;, sees an i.i.d. Gaussian sourSg ~
addition is oveiF. Letd(v) = 2v— M. By applying the results A(0,0%) and faces one terminal of a Gaussian MAC. The
of Theorem 2, we can get the computation rates given in Talgacoders must satisfy average power constraints:
I. The best separation-based performance is determinad usi

Lemma 1 and the upper bound is from Lemma 12. 1 ij[i]i’ <P Vje{l,2,...,M}. (27)
For N = 0.25, our scheme outperforms separation-based n--
coding by a nice margin. FoV. = 1, our scheme only the channel output is just the sum of the channel inputs plus

oytperforms separation as the numper of users bepomes |aﬁg&ependent Gaussian noise:
Finally, for N = 10, our scheme is always dominated by
separation. Note that these are only achievable rates fer on
particular systematic scheme. By adjusting the consimtiat
used in the uncoded phase, we can certainly create a better
code. We could also adjust the power allocation between tWéere {Z[i]}72, is an i.i.d. Gaussian sequence with mean
first and second phases of our systematic scheme to imprévé varianceV. For everyk source symbols, we are allocated
performance. In the above example, we used the same average ¢k + ~ channel uses whergr € Z, andr < k. Recall

power per symbol across the codeword. thatr = £.
) ] ~ Our goal is to reconstruct the sum of the sourdés=
Remark 12:As shown in Example 5, sometimes remapping, 4 g, 1 ...+ §,,, at the decoder with the lowest possible

the MAC to a linear MAC outperforms systematic codinggistortion. Distortion is measured by the usual mean-segiar
This does not appear to be the case for the Gaussian MAGor criterion:

Converting the Gaussian MAC to a discrete linear MAC re-

quires using an input pdf that is far from capacity achieving D=
many regimes, the structural gains obtained from compartati

coding over a transformed Gaussian MAC are overshadowed

by the rate penalty due to the bad input distribution. Lemma 5:If x = 1, then uncoded transmission is optimal
sending the sum of i.i.d. Gaussian sources over a Gaussia
C and achieves distortion

M
Yl = Y X0+ 2l 29)

el

k
> Bl - U7, (29)

The above examples show that computation coding is use
even when the desired function and the channel are not addi-
tion over a finite field. However, it is clear that our systeimat Dye = Ma%i.
scheme is not ideally matched to the Gaussian MAC, even N+ MP
if it can give significant gains. This is partially because ou Proof: (Achievability) At each encoder, simply feed a
sources are binary but the channel has a continuous inpatirce symbol, scaled to meet the power constraint, into the

(30)



TO APPEAR IN IEEE TRANS INFO THEORY, OCTOBER 2007. 11

channel at each time step. At the decoder, we compute thex € A, then—x € A. A lattice can always be written in
minimum-mean squared error (MMSE) estimate(of This terms of a generator matrig € R™*":
results in the following distortion:

. A={x=2G:z€Z"}, (32)
D= E[(U-U)?
Vo2 (E[UY])? whereZ represents the integers.
= O — ———
g E[Y?] Definition 15: A lattice quantizeris a map,@ : R" — A,
= Mo? N that sends a point, to the nearest lattice point in Euclidean
N+ MP distance:
(Converse We use the upper bound from Lemma 14 in Xq = Q(x) = argmin |[x — v][2. (33)
Appendix Il. Recall that = 1. ve
c Definition 16: Letx mod A = x—Q(x). For allx,y € R",
K< —2 the modA operation satisfies:
R(D)
log (Mo—g) < log (1 N @) (x modA) +y) modA = (x+y) modA.  (34)
p NN Definition 17: The fundamental Voronoi regigny, of a
D>Mot——r lattice, is the set of all points that are closest to the zexior:
N+MP , V= {x:Q0) =0}

_ ~ Definition 18: The normalized second momeat a lattice
Our uncoded scheme achieves the lower bound on distgy-

tion. Therefore, uncoded transmission is optimal for segdi )

sums of Gaussians over a Gaussian MAC. Essentially, this is G(A) = 1 Jy [1x][*dx ' (35)

the distributed computation extension of the famous faat th k U dx]”%

uncoded transmission is optimal for sending a Gaussiarcsour 4

over an additive white noise Gaussian (AWGN) channel. In Erez, Litsyn and Zamir showed in [38] that there exist
the point-to-point setting, we are able to use a separati@\‘itices that are simultaneously good source codes and good
theorem to send a Gaussian source over an AWGN chanfig@nnel codes. These will be extremely useful in our dis-
optimally for any ratio of channels uses to source symbolfgibuted refinement scheme.

However, for computing a sum over a Gaussian MAC, there Lemma 6 (Erez-Litsyn-ZamirjThere exist sequences of

is no separation theorem. As in the discrete case, we ices, Ay, such that the normalized second mometA )
improve our communication system by taking advantage Q asyrr;pfc;tically optimal: k’

the structure of the MAC.

We now give a lower bound on the achievable distortion for . 1
- . lim G(Ax) = —, (36)
any joint source-channel scheme for this problem. k—o0 2me
Corollary 5: The achievable distortion for sending a Gauand with high probability an iid. Gaussian sequence,
sian sum over a Gaussian MAC is lower bounded by {Sli]}i=,, with mean zero and variana@(Ay) falls within
the fundamental Voronoi region, :
N K
_ 2 . 11 k
Diower = Mo <m) . (31) kli)l{)lo Pr({S[z]}izl IS Vo,;g) =1. (37)
This bound is an immediate consequence of Lemma 14 $ee [38] for a full proof.
Appendix II.

In [18], Kochman and Zamir develop an elegant joint
) ) source-channel lattice scheme for sending a Wyner-Ziv Gaus
B. Lattices for Computation sian source over a dirty paper channel. Our distributed re-
Lattice codes are the AWGN equivalent of linear coddtmement scheme consists of two main steps. First, we use
for DMCs. A great deal work has gone into showing thaincoded transmission to send a noisy sum to the decoder.
lattice codes can achieve capacity on an AWGN channel ahtlen, we have each encoder run a version of the Kochman-
the rate distortion bound for a Gaussian source [18], [35Famir scheme targeted at the desired siimUnfortunately,
[39]. Like linear codes, the appeal of lattices was theirdow there is a penalty for this form of distributedness. Thedathat
complexity compared to purely random coding strategiesach encoder results in channel outputs that violate theepow
However, their structural properties can also be expldited constraint by a factor ofi/. Therefore, we must scale down
distributed computation. First, we will need some defim&o our inputs to meet the power constraint and accept the negult
from [18]. increase in distortion at the decoder. Still, in many cades o

I . , _ : interest, our scheme outperforms separation as we willrsee i
Definition 14: An n-dimensionallattice, A, is a set of gotion vI-C

points in R™ such that ifx,y € A, thenx +y € A, and
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Theorem 3:Forn = ¢k, ¢ € Z,, the following distortion is This equation will be satisfied by our final choice of the
achievable for sending a Gaussian sum over a Gaussian Mé@hstantsy and~. The decoder’s estimate of the sum is given
so long asP > -1 N: by:

-1
N MN
Dy = Mo? : 38
”S<N+MP> <N+MP) (38)

Proof: We will first show the achievable scheme fo
2. We thus hav@k channel uses to convéysums. We will use o
the firstk channel uses for an uncoded transmission phase as in o
. o = — -1 i+ —(1- +u.
Lemma 5. The decoder will then form an MMSE estimétef b (\/M ) ;XJ “ (1=Fra+u
the sumU = S; + - - - + S)y and use this as side information_ ) ) )
for the next phase. Thug/ = Q + U whereQ is an i.i.d. This estimate gives the following mean-squared error:

«

M
=4 <——1)ij—|—ozz+'yq + 1
vM =

Gaussian sequence with mearand variancer;, where ) a 2 ) 5 5
D=g (—_—1) M*P+a”N | + (1 - B7)%0g.
2 Mot (39) M
On = Oc——F/—/———=.
Q SN+MP We define the following constants:
Choose a sequence of good latticés,, using Lemma 6 MPM
and scale them such that the normalized second moment of T VMPIN
the lattice isM P. Letd;,ds,...,dy be independent dither
. R MP MN
vectors drawn uniformly over the fundamental Voronoi regio Yo = — | 1— ,
d; ~ Unif(Vy ), and made available to the encoders and 79Q MP+N
decoder. and lety — ~, from below ask — oo. This ensures that
Each encoder transmi%xj where: Equation (42) is always satisfied. We also set:
o2 o
x; = [ys; +d;] mod Ay. 40 = Q!
5 = [rs; 5] k (40) B MP
The channel output is given by: As k — oo, we get that the achieved distortion is:
N MN
M D = Mo3 . 43
y=—x+z SN+MPN+MP (“43)
VM j=1 This proves the theorem fdr= 2. For all higher values of,

the scheme can be repeated with the final estimate from the

The decoder then computes: last refinement taken as side information for the next stame.

M R Remark 13:A simple achievable scheme for situations
t=oay— Zdi +u where we do not have an integer number of channel uses per

=1 source symbol is to time share between two integers whose
r =t modAy average gives the proper ratio.

M M

« Remark 14:Our scheme is only applicable to the “band-
|V D_xi+az— (dj+5s;)+yal modAe gy, expansion” case; i.e. we have more channel uses than

L =t =t source symbols.
M
= (L - 1) ij +az+vq| modAy. Remark 15:This joint source-channel scheme can be easily
VM = generalized so that we can send a linear function of Gaussian

sources instead of just a sum. Essentially, theoefficient in
If the second moment of the term inside the modulo operatim0) should be replaced by;~ at encoderj whereg; is the
does not exceed/ P, the second moment of the lattice, themjesired coefficient for that sourc# (= Z;‘il $;S).

we can guarantee that: '

o C. Separation-Based Scheme
. ( a 1) ij tazt+yq| =1. (41) We now give the best separation-based scheme for sending
k—oo v M a Gaussian sum over a Gaussian MAC.

J=1

See [36] for a detailed discussion of the effect of the dither Corollary 6: The  best achievable distortion for a
this step. The second moment can be controlled by requiriggParation-based scheme for sending a Gaussian sum

that: over a Gaussian MAC is given by:
1
9 L
N M
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This is an immediate consequence of Lemma 11 in Aguch that:
pendix I-B.

For comparison, note that with repetition coding we can
achieve the following distortion:

DY™)

;~I>— Q?;
M=

E[d(U[i), U[i))] = D. (48)
1=1
Deeo = Mo N ’ (45) An. upper bound on t_he joint computation rate—dis.tortion
N+ /{MP function and the separation-based computation ratertito

function are given below:

wheren = ¢k for somel € Z.. P
_ log (1 + T)

Example 9:Let M =5, P =3, N =1, ando? = 1. The Koeeed D) = W (49)
end-to-end distortions for repetition coding (45), separa Og( D )
based coding (Corollary 6), computation coding (Theorem . log (1 + ME
Kl D) = ( N ) (50)

3), and our lower bound (Corollary 5) are given in Figure T (MaA\

7. Note that as the number of channel uses per source Mlog( D )

symbol incre_ases, our sch_eme performs exponentially et{g e that our upper bound i3/ times higher that the best

than separation-based coding. separation-based rate just as in the reliable case. We n@w gi
the computation rates for computation coding and repaetitio
coding for the case when = ¢k for somel € Z, :

10
MP
ooe(D) = BT ) s Mgy
log ( DS) —log M
DMP

5 Krep(D) = NOMoZ D)’ (52)
g = For rates that do not satisiy = ¢k we can find the

-4o0r - - - Repetition g | computation-rate distortion function by time-sharingvixetn

50 * Separation o | points that do satisfy the constraint.

—— Computation o
-60/ 5 Lower Bound Ta ] Example 10:Let M = 5, P = 4, N = 1, ando? = 1.
° The computation rates for our upper bound (49), computation
% 25 coding (51), separation-based coding (50), and repet{6@n

5 10 15 20
Channel Uses per Source Symbol (1/k; h . . .
P Y ) are given in Flgure 8. We only p|0t computatlons rates lower

Fig. 7. Refining the Sum of Gaussian Sources over a Gaussia®, MA— 5, thanl as our scheme is only useful in the bandwidth expansion
P=3N=10%=1 regime 0 <k <1.)

1

0.9r
D. Computation Rate sl

We now examine the performance of our scheme in terms of 07
its computation rate. The results in the previous two sastio Soe o
were given in terms of distortion per number of channel uses. 8 gs| -
This can be thought of as a type of distortion-rate functieor. 2 0dl

= Upper Bound
—— Computation

a better comparison to our results on reliable computatien, § 0l 'Ezz:;ilt;c:]n
now define a rate-distortion function for distributed refirent. '
o2f T aaee--
Definition 19: The computation rate-distortion function 0T
k*(D), is the highest number of functions per channel use that okt ‘ ‘ ‘ ‘
can be conveyed to the decoder with average distoffiohet 0 005 O B stortion, b 02 028

d(u, @) be the distortion measure of interest. A computation

ko . : .
rate’{(D) =nlS achievable if fork large enough there exist Fig. 8. Computation Rates for Sending the Sum of Gaussianc&swver
encoders and a decoder: a Gaussian MACM =5, P =4, N =1,0% =1

g SF—ar 46
179 (46) Our lattice computation coding scheme performs signifi-

. \m k .
D Yy" = U", (47) cantly better than the best separation-based scheme so long
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as the power per user exceeds the noise variance. Howeeeral. [42] that the field size only needs to be larger than
the distortion achieved by our scheme is also much highttie number of receivers. We reproduce the version from [40]
than that given by the lower bound. Future work will focus obelow.

closing this gap. We now turn to an application of computatio

coding to give the capacity for a particular network coding Lemma? (Ho et aI_.):Let G = (V,’g,) be_a staqdard qet—
problem. work of noiseless, directed, rate-limited links with a dang

source and. receivers. The multicast capacity is given by the
max-flow min-cut bound and can be achieved by an algebraic
network code over any finite field larger than(F,, ¢ > L).
The encoding function of each node (except the receivers) is
In this section, we demonstrate that computation codirrgmemoryless, linear combination of all its inputs:
is not only useful for problems that explicitly require the o
dlstrlbgted computa_tlon of functlons, it is also useful for X, li] = Z a3 Ysi]- (54)
achieving the capacity of certain networks. We look at asclas _
of networks that include linear MACs for which computation !
coding is a natural way to find the multicast capacity. The liwhere Y,;[i] is the value seen by node at time i on its
ear MACs act as coding points when needed and computatiSnincoming edge andv,;[i],a,; € F, for all v € V'\
coding is used to ensure that the resulting outputs arebtelia {vff 03, ol
Our setup is very similar to the network coding problem
[13], with the addition of MACs. The usual networg, con-
sidered in a network coding problem consists of the follavin

VII. M ULTICASTING OVER FINITE FIELD MAC
NETWORKS

For a full proof, see [43].

elements: A. Problem Setup
1) V:the encoder/decoder nodes in the network. Each nodeFirst, we constrain all MACs in our network to be linear
v, has a unique label taken from the integers. with respect to the same fieldl, We also assume that the MAC

2) &:the directed, point-to-point, noiseless links. Each linkoise processes are independent of each other. This tiestric
is labelled by a tripl€v, v, ) wherev; andv, are the on the MACs is necessary to give tight upper bounds on
source and destination node labels and R, is the the multicast capacity. Note that computation coding can be

capacity. beneficial even if some of the MACs are nonlinear [20].
3) v“: the source node. One element)f However, our primary objective in this section is to showttha
4) (vft ol ... vE): the receiver nodes. Each one is acomputation coding is sometimes a useful tool to get all the

element ofV. way to capacity.

See Figure g(b) for an examp|e of such a network. A finite field MAC network,Gyac, consists of the following
elements:

Definition 20: A multicast rate,R, is achievableif Ve €
(0,1) andn large enough there exist encoding and decoding
functions for the network such that:

1) Vu: the encoder/decoder nodes of the network. Each
node,v, has a unique label taken from the integers(
Z,) and consists of a decoding functigp,, for each

We = for(Y/%) incoming edg€v;, v) and an encoding functiofy,,,, for
o A each outgoing edgév, vy).
Pf({W1 #FWrU---U{W # W}) < (53)  2) v%: the source node. One element)af.
3) (vf,vf, ... ,vE): the receiver nodes. Each one is an
whereW ¢ {1,2,...,2"%}, element ofV/.

4) Vuac: the MACs in the network. Each MAGn, has a
unigue label (even from the elements)af) taken from
the integers/ € Z,). We also define a function(-)

A simple upper bound is the max-flow min-cut theorem of such thate(m) equals the maximum sum rate of MAC

Ford and Fulkerson. In [13], it was shown that for a network of ~ m.

point-to-point channels the multicast capacity is giventiy 5) Enn: the directed point-to-point channels in the net-

max-flow min-cut theorem. For each receiver, calculate the work. Each channel is labelled by a triples, v2,7)

maximum information flow across all cuts that separate the wherev; and vy are the source and destination labels
source node from that receiver. The multicast capacity és th andr is the capacity.

minimum of all these max-flow values taken over all cuts and 6) Ens: the input edges from nodes to MACs. Each edge

receivers. In [14] and [15], it was shown that linear encgdin is represented by a pafp, m) which means that node

and decoding over a finite field is sufficient to achieve the v has an input into MAGn.

multicast capacity. Bounds are also given on the requirddi fie 7) &£,,n: the output edges from a MAC to a node. To

size. For our computation coding scheme to work, we will simplify our main proof, we assume that each MAC only

need that the field used by the network code is identical to  has an input into one node. Note that by introducing
the field of the MACs. It was independently and concurrently  intermediate nodes in the graph we can exactly simulate
shown by Ho et al. in [40], Jaggi et al. in [41], and Sanders the effect of the MAC output broadcasting to multiple

Definition 21: The multicast capacityis the supremum of
all achievable multicast rates.
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nodes. Each edge is given by a pair, v) which means observing node. These links have capacities given by the sum
that the output of MAGn is fed into nodev. rate capacity of the original MAC. This transformation can b
8) Xy,v,[i]: the channel input on the edge;, v;) at time summarized as:
1.
9) Y,,v.[i]: the channel output on the edge;, v) at time
1.

See Figure 9(a) for an example of such a network. Achiev-
ability and capacity for multicasting over a finite field MAC  The new network,G’ has the same max-flow min-cut
network are defined identically as in the original networkharacterization as our original netwotk,... ChooseR < C
coding problem (Definitions 20 and 21). where C' is the multicast capacity o’ and choose > 0.

Remark 16:Note that the linear MACs that are used in thiéJS'ng3 Lemma 7, We can find an algebraic netwcl)rk .code over
network have a capacity region that can be described b)} field th‘f"f‘ achieves a mult|_cast rafe 9V9fg with an
simplex. In other words, a single user can reach the optinf{fCr Probability less tharf. This algebraic network code
input distribution on its own. Thus, all of the benefits fronf'€SCiDes an input-output relationship for each node tret w
using our codes in this problem are due to structural gain r}‘ﬁﬁ" duplicate on our original MAC network over a long block
collaborative gain. ength

& =Evn U{(v,m,0)|(v,m) € Enpr} -
< U{(m,v,c(m))|(m,v) € Epn}

Let K = |Enn| + |Emn | be the number of channels in the
original network,G... For each stand-in MAC node in the
B. Multicast Capacity transformed network we create a computation code for the

We will now show that the max-flow min-cut bound isMAC’ m € Ve, in the original network. The computation

achievable even if there are linear MACs in the network. NoPeOde IS targeted at t.he linear func'uon. o@used to process
that in the cut between each receiver and the source, elJgputs in the stand-in MAC node. This Imgar functlcc(%)n,
MAC is evaluated based on its sum rate. At first, this sugge§l§n be sent over the _MAC atany comp_uta'uon rake 7 Unm)

that our outer bound is loose since the receivers may comp\@'ﬂ&h an error probability less thagr using The.orem_ )

for part of each MAC’s sum rate. However, by incorporatin Our scheme uses the netwofk: times, divided into3
computation coding into an overall network code, we ca%"OCks each of lengti. In_ a block of lengthn, each node,
exploit the operation of each MAC for our network code. If € VN, takgs the received sequence of channel SYmbO'S
we assume that the MAC field sizeis larger than the numberfrom the previous block and decodes them to determine the

of receivers in the network, then we can find an achievablg"'€SSages sent from all incoming links. The messages are
scheme that meets the outer bound. assumed to be sequences of values d@vdt then takes these

messages and computes the linear functions assigned to it in
Theorem 4:The max-flow min-cut bound for multicastingthe transformed network. The output of these functions are
is achievable for a finite field MAC networlG,.., if |F| > then sent over the appropriate point-to-point channelsin
L, where|F| is the MAC field size and. is the number of using a capacity-achieving code with error probabify. The
receivers in the network. functions intended for stand-in MAC nodes in the transfatme
network are mapped to the appropriate computation codes
designed above. Thus, over a long block, each node and MAC
. . i - emulates the function assigned to it in the transformed net-
|nF0 a network of nplseless, pomt-to-pomt linkg.. Then, W€ work. Since the rate assignments in the transformed network
wil f|r_1d an app_ropnate network code using Lemma 7. F'n"_"”%lre appropriately chosen, all functions can be sent without
we will map this network cod_e fo our original network USIngQ/iolating their respective channel capacities. Howewerthie
computation C(,)des and classical channel codes. .. Jnitial blocks, not every node sees incoming symbols owng t
The nodes)’, of our transformed network are the ongma{j?lays in the network. By choosing (andn) large enough,
encoder_/d_ecoder n.odes plus one new encoder/decoder rrOOI9\/e0 can overcome this delay and approach the target rate.
each original MAC: Finally, we get that the network code is successful if the
algebraic network code is successful and no block errors are
V' =VN UVunc- made on any channel in the network. By the union bound, we

. . et that this error probability is less thanwhich completes
The noiseless linksg’, of our transformed network come?he proof P y P

in_three types. First, we have Iir!ks betw_een nodes that Were(Converse Since our network transformation can only
_(;;:gmally c_onngzctedh b% trr:e p?lnl'i-tq-po!nt crganrr\]e&w ' _increase the multicast capacity of the network and we can
€ capacity of each of these links is given by the capacify ;e q any rate less than the transformed capacity, we get

of the original point-to-point channel. Second, we take tr}ﬁat our scheme meets the max-flow min-cut bound. m
original MAC inputs from nodesf s, and convert these

into links between the inputting nodes and the new stand-inWe have shown that for channel networks that include
MAC nodes. These links have infinite capacities. Finally, WgIACs, computation coding is helpful for multicasting. Sijec
take the original MAC outputs to node§,,n, and convert ically, for certain links, we are only interested in sending
these into links between the new stand-in MAC nodes and thanctions of the input bits. If the communications bottleke

Proof:  (Achievability) First, we will transform our
network of noisy MACs and point-to-point channe($,,.,
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on that link is a MAC, then computation coding can increagegion, Ry.c, is the set of all rate pairg,R, R2), satisfying
the overall network throughput. If all of the MACs in ourR; + Ry < 1 — hgp(q).
network are perfectly matched to linear functions, whicthis . .
case with Iinrt)ear MA}éIS, then we can give an overall network Lgmma 8:For_ the channel network in Figure 9(b), the
code that achieves the max-flow min-cut bound. multicast capacity is

Overall, our results indicate that structured joint source
channel codes are necessary for the analysis of general net- 2

work capacity, even if we are only interested in communiati The proof follows from a simple application of the max-

bits. This is similar to the conclusion reached by Korned any ;v min-cut bound and network coding. The key is to send

Marton in [9] for the many-help-one source-coding problemy, o ity of the left and right bitstreams down the centehpa
This may indicate that purely random coding techniques Wgee [13] for more details.

not be able to achieve the capacity of a general network,) computation Codingif we only consider the structure
some structure is needed. For a general network of multi-Ugg yhe function for source compression and treat the MAC like

channels, a complete analysis may be intractable due to {e it hipes we cannot achieve the optimum performance. By
complications introduced by the various channel strustar@l ,ging 5 linear network code and a linear channel code, we can

the seeming necessity of structured codes. take advantage of the channel's natural operation to fgliab
compute a function for the network code.

(55)

Cup=min (20, 0+ 182 100D,

C. Detailed Example: Butterfly Network Corollary 7: For the channel graph from Figure 9(a) with

We now develop a simple example for which computationy mod3 adder MAC, the multicast capacity is
based network coding provides a clear advantage over )
Cn =min (2C,C +1log 3 — hg(q)). (56)

separation-based network coding. Consider the channel net

work in Figure 9(a). Each vertex on the graph represents arhjs is an immediate consequence of Theorem 4. Thus,
decoder/encoder pair. The labeled edges represent resseigcorporating the natural function computed by the MAC into

bit pipes each with capacity C. At the center of the graph j§network code can outperform a separation-based scheme.
an linear MAC with inputsX; (from the left) andX, (from

the right) and outpu¥” given byY = X; @3 X, ®3 Z where Remark 17:The field size requirements in Theorem 4 are

Pr(Z =0)=1—-gqand PtZ = 1) = ¢q. We would like to not tight. If we placed an M2MAC in the center of Figure

determine the multicast capacity,;, of this network. 9 (a), we could still achieve the max-flow min-cut bound by
sending mod2 sums down the center path using the code from

1% Corollary 3.

Remark 18:We can find more examples of computation
coding beating separation by incorporating the MACs from
Example 5 or Section V-B and determining the computation
rate for sending a mod-sum over these channels. See [20]
for more details.

D. Discussion

We now have that channel-network separation cannot com-
pletely characterize the multicast capacity of networle th-
cludes MACs. A similar conclusion was reached for networks
that include deterministic broadcast channels by Ratnakedr
Kramer in [17]. Ramamoorthy et al. showed that source-

channel separation does not hold for multicasting more than
Wh W Wh W one source to multiple receivers in [44]. All of these result
(@) (b) ol - -
ply that both structural considerations and source depen
Fig. 9. (a) Multiple-Access Network Coding Example (b) Ceriing MAC ~ d€NCies are necessary to characterize the capacity of ehann
into bit pipes networks. For general channel models, these considegation
may put the optimal solution out of reach given current tools

1) Separation-Based Network Codingiven the network However, for certain classes of channel models it should be
in Figure 9(a), one might choose to use standard channel cpdssible to give capacity results by choosing codes that are
ing strategies coupled with network coding. Using a mudtipl appropriately matched as was done for linear MACs in this
access code, we can convert the network of noisy channgéstion.
into a network of noiseless bit pipes (see Figure 9(b)). Then
we can find a network code for our network of bit pipes. VIIl. CONCLUSIONS

Using a standard MAC code, we can allocate a aé” We have developed a tool, computation coding, that is useful
for the left user and a ratBy*° for the right user. The capacity for reliable distributed computation over MACs. This caglin

T
o
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technique essentially consists of using the same strutture We say a set of vertices is independent if no two are
source code (targeted at the desired function) at each encazbnnected. Lel'(G) be the collection of independent sets of

followed by a capacity-achieving channel code. For certathe graphG.

classes of channels, such as discrete linear MACs and th
Gaussian MAC, structured channel codes can achieve th
computation capacity. In these cases, our computationscode Hg(S1|82) 2 min  I(W;51Ss), (57)
can_take full a_ldva_nta_g_e of the channel operation to compete t SVIVGM}S&(%)

d_eswed function: individual codewords can actually pegeelr whereW — S, — S, signifies a Markov chain.

directly on the channel. In these cases, computation coding

does much better than separation, sometimes with gains thatemma 9 (Orlitsky-Roche)Two sources,S; and S, are
are proportional to the number of users. In other cases, generated from the joint pmfs, s,. An encoder observes;

do not exploit the channel operation for the full duration ond must send enough bits to a decoder that Seesuch that
our scheme, only in an initial uncoded phase. The resultitige decoder can reconstrugt= f(S;,.52) with a vanishing
systematic computation code shows that there are gains toppebability of error:

had even in mismatched cases such as binary addition over a

efinition 23: The conditional graph entropys given by:

. Gk kR

binary multiplying channel in Example 6. £:81 — ig’ 1} N . (58)
The underlying codes that make up our computation codes D:{0,1}"" xS —U (59)

are essentially the same as the structured codes being de- Uk = D(g(sf),sg)

veloped for practical use. Furthermore, our schemes can be . Ak Ey

viewed as having a source coding part followed by a channel k1i>r20 PU*#U7) =0. (60)

coding part; the main difference from separation-basedhgod This is possible iff:
is that we do not force a representation in bits, we only use 61
the underlying alphabet of our desired function. The chhnne R> Hg(51/52). (61)

coding part of our computation codes remains unchanged ifwe will use this side information result to generate individ
we change the desired function but leave the channel the.saf@ rate constraints on separation-basd schemes forbuiitstd
Thus, our strategies are of relatively low complexity ane, arcompression. There arel sources and a desired functig).
in a sense, modular. Let S§ = (51,52, ..., Sj-1,841.- - -, Sum).

We have also shown through a case study that these codin% )
strategies can be useful in analyzing the capacity of nétsvor Le€mma 10:The rate required for each encoder of a
that include MACs. We suspect that similar applications §eParation-based scheme for distributed compressidh ef
an optimal computation code for Gaussian MACs may yielf(51, 52, -, Su) is lower bounded by
insights into the capacity of AWGN networks. At the very R; > Hg(Sj|Sjc) Vie{1,2,...,M}. (62)
least, it seems clear that structural considerations dab@o '

ignored if we want to characterize the capacity of large Proof: At encoderj, assume that all other sources are
networks. available at the decoder. Clearly, this can only decrease th

rate required of encoder. An application of Lemma 9 gives
that a rate ofH(S;|SS) is required from each encoder to

APPENDIXI reconstructf(Si, Sa, ..., Syr) losslessly at the decoder. m
BOUNDS FORSEPARATION-BASED SCHEMES

) ) _ ) Proof of Lemma 1We need the conditional graph entropy
In this appendix, we will develop two inner bounds on thg; each encoder used in the proof for Lemma 10 above. The
distributed compression rate region. The first is a bound @Raracteristic graph for each encoder is complete. Thexefo

distributed, reliable computation. The second is a boumd fg,o independent sets are the singletonsiane: S;. It follows
computing the sum of independent Gaussian sources aStHQtHG(Sj|S-C) = I(W;5,|S¢)) = H(S,|S¢) :JH(SJ»)
Section VI-C. Y T I '

B. Separation-Based Gaussian Summation

A. Separation-Based Reliable Computation We now show that if we want to reconstruct the sum of

independent Gaussian sources by separation, the encaaters ¢

For the first bound, we will need a result of Orlitsky anqjo no better than send their sources to the decoder
Roche for computing with side information [10]. '

Let S; and.S; be sources according to Definition 1 and let Lemma 11:Let Sy, Ss,..., Sy be i.i.d. Gaussian sources
f : 81 x S — U be the desired function. with mean0 and variances%. There areM source encoders
o . each observing one of the sources and conveying bits to a
Definition 22: The elements of5; are the vertices of the jecoder that must reconstrudt— Sy + Sy + -+ Sy Dis-

characteristic graph G, of 51, 5;, and f. Two distinct ver- 5tion is measured by the usual mean-squared error ciiteri
tices,a and b, are connected if there is@ac S, such that ) _ E[(U — U)?]. The sum rate distortion function is

pSISQ(Q,C), pS152(b7 C) > 0 and f(aac) 7£ f(b,C) We say M Mo2
the graph iscompleteif each vertex is connected to every R(D) = — log( C’s>. (63)
other vertex. 2 D
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Proof: (Converse Let f; : R* — {1,2,...,2"Fi} pe Definition 24: The maximum joint sum ratés the highest
the j" source encoding function and I8t; = f; ({S;[i]}*_;) sum rate one can achieve on a MAC if the encoders are
be the message output by this encoder for a lerigtilock allowed to cooperate completely. It is given by:
of source symbols. GivelW = (Wy,Ws,...,W),) at the
decoder, the minimum-mean squared estimate (MMSHY of Cronr = max I(X1, X, o, Xar Y. (64)

. . ”_ . p(fbl,mz,...,mz\/j)
is given by the conditional expectation. ) ] ]
Lemma 12:The reliable computation rate is upper

k .
1 o bounded:
D == E[U[i] - U[i])*
k - CJOINT
=1 Kiont < w7 - (65)
L& )
= ZE[(U[i] — E[U(#)|[W])?] The proof follows immediately from joining the encoders
=l ) and applying the point-to-point separation theorem. S2eg2
1 x M [ 216] for a full proof of the point-to-point separation theon.
@ % ZE ZSj [i] — F ZSj[i] W Our second bound is for the case when the sources are
i=1 j=1 =1 independent. We assume that the multiple-access chansel ha
r _ 3 a symmetric maximum sum rat€\,,., according to Definition
k M M H :
® 1 . _ 10. This assumption can be removed for a more general
% Z E Silil - B ZSJ [2]|W; statement of the lemma below.
=1 Jj=1 j=1
IV ) Lemma 13:If the sources are independent and the max-
© 1 2 imum sum rate of the MAC is symmetric then the reliable
= - E[(S;]i] — E[S;[5]|W. : :
k ;; [(55[7 LS5 EIW5])] computation rate is upper bounded by
M C
(g) 0§2—2Rj Bp < %U?) (66)
j=1 .
Proof: Let P. = Pr(U* # U*). By Fano's inequality,
(a) by linearity of expectation we can show thatf (U*|Y") < 1+ kP.log|U|. Now, set
(b), (c) by independence &, and S, for all i # j Mg = % + P.log |U].
(d) by the single source rate distortion converse (see [@2, p 1
350-351]) HU) = EH(U’“)
1
Minimizing the function 327 22-2% is just a con- = E(H(Uk) — HU*Y™) + HU*Y™))
vex optimization problem subject to the convex constraint 1 i i
S", R; = R. It easily follows that the minimizing solution = UUSY") + HUTY™))
satisfiesR; = Ry = --- = Rs. We obtain: 1
< ZI(URY™) 4 A
D > Mo%2 2% If
M M 2 S_I(X{IaX;va]y\Lﬁyn)—i_Ak
R(D) > 7log( DUS>. k

where the last step is due to the data processing inequality.

) - ] From here we are free to apply the standard MAC converse
(Achievability) Each encoder simply uses a standard Gaussi@ie [22, pp.399-402)):

rate distortion code for its source with distortion target =

L. Such a code requires a rate of at ledsbg Mgé per k < [(Xy, Xo, ., X Y)
encoder. See [22, pp. 351-358] for the derivation of such " H(U)

a code. The decoder recovers each source and sums fg?esome pdf of the fornﬂl.‘f px, (z;). The result follows
individual estimates to get an estimate of the desired Sumil‘ﬁtmediately. g=1ERA -
distortion D. [ |

It is also possible to give an upper bound that factors in the
exact nature of the source correlations as in [45]. However,
the focus of this paper is on the gains that can be achieved
by exploiting the structure rather than the correlationis.of\

In this appendix, we give two upper bounds on the coneur examples have independent sources so such a bound is
putation capacity and one upper bound on the computationnecessary for the scope of this paper.
rate-distortion function. Our first bound comes from jomin Finally, we upper bound the computation rate-distortion
the encoders and reducing our problem to a point-to-poifainction for the case when the sources are independent and
problem. the MAC has a symmetric maximum sum rate.

APPENDIXII
COMPUTATION CAPACITY UPPERBOUNDS
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Lemma 14:If the sources are independent and the max-
imum sum rate of the MAC is symmetric the computation[l]
rate-distortion function is upper bounded:

C’M AC

Ry(D)

(2]
(3]

k(D) < (67)

where Ry (D) is the rate-distortion function of the desired
function,U = f(S1, Sa,...,Sm)-

Proof: Let d(u, %) be the distortion measure asdi] =
(S1ld], Sali], . . ., Sali]).

(4]

(5]

?T
=
=
S
I
I
=
IS
=
c
\'E‘

(6]

k
= kRy <% ZE[d(U[z], Uli)
@ <1 - . )
kY 2 Ro(BUTL D)
k
=" Ry(E[(U[i], U[i])]) (8]
=1
k
2180 U) .
z;l i [10]
= "h(S[i]) = Y _ h(S[i]|U]i]) [11]
i=1 i=1
k
&S h(Sll) — Y A(SOF. S - 1), s[1) B2
D (k) — h(Sk|T*) [13]
= I(S*;U")
< rxm v e

[15]
(a) by convexity ofR(D)
(b) by definition of R(D)
(c) since conditioning reduces entropy
(d) by the chain rule for entropy
(e) by the data processing inequality
From here we are free to apply the standard MAC converse
(see [22, pp.399-402)): (18]

[16]

[17]

k I(X17X27"'7X1\1;Y)

=< [19]
- Ry (D)

n

for some pdf of the form{]}, px, (z;). The result follows 1]
immediately. [ ]

[21]
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