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Computation over Multiple-Access Channels
Bobak Nazer,Student Member, IEEEand Michael Gastpar,Member, IEEE

Abstract— The problem of reliably reconstructing a function
of sources over a multiple-access channel is considered. Itis
shown that there is no source-channel separation theorem even
when the individual sources are independent. Joint source-
channel strategies are developed that are optimal when the
structure of the channel probability transition matrix and the
function are appropriately matched. Even when the channel
and function are mismatched, these computation codes often
outperform separation-based strategies. Achievable distortions
are given for the distributed refinement of the sum of Gaussian
sources over a Gaussian multiple-access channel with a joint
source-channel lattice code. Finally, computation codes are used
to determine the multicast capacity of finite field multiple-access
networks, thus linking them to network coding.

Index Terms— Distributed computation, joint source-channel
coding, lattice codes, linear codes, multiple-access, network cod-
ing, separation theorem.

I. I NTRODUCTION

Computation and communication are often viewed as dis-
tinct problems. A communications engineer, tasked to design
a multi-user system for performing computations while facing
communication constraints, would almost certainly employ
a version of the “separation principle.” The system would
employ a (distributed) source code to compress the sources
into bits and a channel code to losslessly convey these bits over
the noisy channel. The perceived reason for this design choice
is two-fold. First, the abstraction of the sources and channel
to bits lends itself to a universal, modular design. Second,it
seems that the only gain from a joint source-channel design
stems from exploiting the correlations between the sourcesas
in [1].

In this paper, we study the problem of computing functions
over multiple-access channels (MACs) and show that in many
cases of interest, a joint design can exploit a match between
the structure of the channel and the function to be computed.
This structural gain does not hinge on the correlations be-
tween the sources and, with a perfect matching, increases
the computation rateproportionally to the number of users.
Furthermore, our underlying schemes are modular and depend
primarily on coding techniques originally developed for their
lower complexity.

Instead of fighting the interference caused by other users,
our codes exploit channel collisions to compute functions
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efficiently. This can be thought of as a form of passive
cooperation between transmitting terminals. More precisely,
in the standard literature, cooperation is often considered in
terms of the correlations (and more generally, dependence)
it creates between transmitted signals, thus permitting itto
outperform the communication performance attainable without
cooperation. It should be clear that correlated signals only
result in improved performance if the correlation between
the signals is appropriately matched to thestructure of the
multiple-access channel. In our considerations, the goal is no
longer to communicate messages, but a function thereof. By
using appropriate codes, the transmitters cooperate to realize
an enhanced communication performance. Again, it should be
clear that this only results in a gain if the desired functionis
appropriately matched to thestructureof the multiple-access
channel. In this paper, we provide a partial characterization of
the necessary structural match.

A. Related Work

Shannon showed in his landmark paper that separate source
and channel code design is asymptotically optimal in a point-
to-point setting [2, Theorem 21]. This insight has fueled a
design philosophy based completely on bits. Although in many
cases of interest, such an approach is optimal, it is well-known
that in certain scenarios separation fails. For instance, Cover,
El Gamal, and Salehi demonstrated that separation is subop-
timal for transmitting correlated sources over a MAC in [1].
Their joint source-channel scheme uses the source correlations
to create channel input probability distributions unavailable to
a separation-based scheme. Exploiting the source correlations
in this fashion is sometimes known ascollaborative gain.
Ahlswede and Han continued work on the problem of sending
correlated sources over a MAC in [3]. In particular, they
considered a variant of the problem in which only one of the
sources had to be recovered.

In [4], [5], an uncoded joint source-channel scheme is
shown to be optimal (and significantly better than separation)
for estimating a remote source from multiple observations.
Although at a first glance, the scheme seems to benefit only
from the correlations between the observations, it also exploits
an ideal structural match between the channel, a Gaussian
MAC, and the sufficient statistic, the sum of the observations.
This uncoded transmission framework has been extended to
more general sensor network estimation problems in [6], [7].

In [8], function properties are used to reduce the amount
of required communication in a large sensor network. For
many functions, the sensors can process incoming data be-
fore sending it along to the fusion center, thus reducing the
communications overhead.

Reliable distributed computation has been studied from
the source coding perspective. The general problem is still
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open and seems prohibitively difficult with current techniques.
Körner and Marton found the rate region for distributed
compression of the parity of two correlated uniform binary
sources in [9]. Their proof relies on randomlinear codes and
their gains come entirely from the correlation between the
sources. The seeming necessity of linear codes for this simple
problem implies that random coding techniques are inadequate
for the general problem.

In [10], Orlitsky and Roche determined the required rate
for sendingX to a decoder with side informationY that must
reliably computef(X, Y ). This is essentially a generalization
of the Körner-Marton parity problem to any function except
that the decoder getsY for free. The basic result is that in
most cases of interest, we must sendX in its entirety to the
decoder; further compression is only possible if for somex

andx′, f(x, Y ) = f(x′, Y ) with probability1. In many cases,
the gains enabled by requiring only a function of the sources
at the decoder versus the sources themselves are marginal.

Earlier work by Yamamato established the rate-distortion
function for sendingX to a decoder that must reconstruct
f(X, Y ) up to a given fidelity givenY as side-information
[11]. In [12], the authors extend the rate-distortion function to
the case where only a noisy version ofX is available at the
encoder.

Recently, there has been a great deal of interest in network
coding [13]–[15]. The key idea is that routing is suboptimal
for multicasting over networks: intermediate nodes may only
need to send a function of incoming messages. For networks of
point-to-point channels, network coding can be implemented
separately from channel coding, i.e. there is a separation
theorem [16]. In more general scenarios, such as networks that
include deterministic broadcast channels, channel and network
coding cannot be separated [17].

B. Summary of Paper Results

First, we will bound the performance of separation-based
schemes. For many functions, if the sources are independent,
then the best a separation-based scheme can do is have each
encoder send its source in its entirety. Our main theorems are
summarized below:

• Theorem 1 gives the maximum achievable rate (or com-
putation capacity) for reliably sending linear functions
over linear MACs. Essentially, we employ the same linear
source code and linear channel code at each encoder.
When the codewords collide on the channel, the codeword
for our desired function is computed. In many cases, the
gains over separation are proportional to the number of
users even when the sources are independent.

• Theorem 2 gives achievable rates for reliably sending
arbitrary functions over arbitrary MACs. Since codewords
cannot always be reliably merged on the channel, we
use a systematic scheme with an uncoded phase and a
separation-based refinement phase. This scheme outper-
forms separation in some surprising cases.

• We use some of the recent lattice constructions from [18]
to create lattice computation codes for sending the sum of
Gaussian sources over a Gaussian MAC with Theorem 3.

Uncoded transmission is exactly optimal when the source
and channel bandwidths are equal. When there are more
channel uses than source symbols, our codes continue to
reap some of the gains of uncoded transmission.

• Through the study of a multicasting problem, we show
that computation codes are useful even when the eval-
uation of functions is not called for in the problem
statement. Theorem 4 gives the multicast capacity of a
class of MAC networks. The MACs in the network are
basically noisy adders over a finite field. Computation
codes are used to harness these channels for part of the
overall network code.

Appendix I gives inner bounds to the source coding region
for distributed computation. Some of these bounds rely on
conditional graph entropy results by Orlitsky and Roche in
[10] which are also summarized in the appendix. Upper
bounds on the computation capacity for a MAC appear in
Appendix II. Note that some of these results were reported in
the conference papers [19]–[21].

II. PROBLEM STATEMENT: RELIABLE COMPUTATION

We explore distributed computation through a variation on
the standard multiple-access problem. Our distributed com-
putation system (Figure 1) consists of the following basic
elements: a set ofM sources and a function,f(·), taken
over those sources, a multiple-access channel, a joint source-
channel encoder for each source, and a decoder. We now give
mathematical definitions for each element.

S1 E1
X1

S2 E2
X2

SM EM
XM

...
...

PY |X1X2...XM

Y D Û

U = f(S1, S2, . . . , SM )

Fig. 1. Reliable Computation over a MAC. The decoder only reconstructs
a function of the sources.

Remark 1:We assume that time is discrete. This can easily
be justified by the well-known fact that any continuous-time
system with finite bandwidth can be reduced to a discrete-time
system with Shannon’s sampling theorem [22, p.248-250]. In
nearly any practical setting, finite bandwidth is assured.

Definition 1 (Sources):Let {(S1[i], S2[i], . . . , SM [i])}∞i=1

be a sequence of independent drawings of an M-tuple of pos-
sibly dependent random variables (rvs)S1, S2, . . . , SM which
take values in the alphabetsS1,S2, . . . ,SM , respectively.
The random variables are drawn according to the probability
distribution function (pdf)pS1S2···SM

(s1, s2, . . . , sM ). As a
shorthand, we sometimes write the pdf aspS1S2···SM

. Also,
we may sometimes write the M-tuple of sources as simplyS.

Remark 2:We use superscripts to denote vectors of rvs.
For example,Uk = (U [1], U [2], . . . , U [k]) and Xn

j =
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(Xj [1], Xj[2], . . . , Xj[n]). To simplify notation we may also
denote a vector with a bold, lowercase version of the random
variable, where the length can always be inferred from context.
For example,u = (U [1], U [2], . . . , U [k]).

Definition 2 (Desired Function):Let U be a discrete alpha-
bet andf a fixed many-to-one function:

f : S1 × S2 × · · · SM → U . (1)

We will refer to f as thedesired function.

Remark 3:We may want to recover more than one function
of the sources at the decoder. This can easily be accommodated
in our framework. For instance, we can definef from (1) to
have a vector output with each element corresponding to the
output of a single function.

Definition 3 (MAC): There is a conditional pdf

pY |X1X2···XM
(y|x1, x2, . . . , xM ) (2)

with xj ∈ Xj , j ∈ {1, 2, . . . , M}, andy ∈ Y. We will refer to
the Xj as thechannel inputs, pY |X1X2···XM

as themultiple-
access channel(MAC), andY as thechannel output.

Definition 4 (Computation Code):A (k, n, ǫ) code is spec-
ified by M encoders:

Ej : Sk
j → Xn

j , (3)

for j = 1, 2, . . . , M , as well as adecoder:

D : Yn → Uk, (4)

such that:

Xn
j = Ej(S

k
j )

Ûk = D(Y n)

Pr(Ûk 6= Uk) ≤ ǫ. (5)

Definition 5 (Average Cost):Each encoder may be subject
to anaverage cost constraintover a block specified by acost
function, ρj(xj):

ρj : Xj → R+

ρj(x
n
j ) =

1

n

n
∑

i=1

ρj(xji) ≤ Γj , Γj ∈ R+, (6)

for j = 1, 2, . . . , M .

Remark 4:The cost constraint can be used to model and
restrict energy consumption at the encoders. Note that not
specifying a cost constraint is equivalent to assigning thesame
cost to each input symbol.

Definition 6 (Computation Rate):We say a computation
rate, κ = k

n
, is achievable if∀ǫ ∈ (0, 1) there exists a

(κn, n, ǫ) code for somen ∈ Z+.

Remark 5:The computation rate is where we break with
the standard information theoretic framework. Usually, we
require that allM sources be transmitted across the channel
losslessly. Here, we only penalize ourselves when the function
U = f(S1, S2, . . . , SM ) is incorrectly evaluated. Also note

that our framework is general enough that through proper
selection off(·) it can become the standard multiple-access
problem [22, p.388-407] as well as the multiple-access with
correlated sources problem [1].

Definition 7 (Computation Capacity):Thecomputation ca-
pacity is the supremum of all achievable computation rates.

III. SEPARATION-BASED COMPUTATION

In this section, we formally define what we mean by
a separation-based scheme for computation over a MAC.
Informally, a separation-based scheme consists of a set of
source encoders and channel encoders as well as a source
decoder and a channel decoder. Each source encoder must
output a representation of its source in bits. Given these bit
representations of the sources, the source decoder must be able
to reconstruct the desired function with a vanishing probability
of error.

Definition 8: The distributed compression rate region, Rf ,
is the set of all rate vectors(R1, R2, . . . , RM ) such that for
all ǫ > 0 and k large enough there areM source encoders
and a source decoder of the form:

ES
j : Sk

j → {0, 1}kRj (7)

DS : {0, 1}kR1 × · · · × {0, 1}kRM → Uk, (8)

for j = 1, 2, . . . , M such that the desired functionU =
f(S1, S2, . . . , SM ) can be recovered with probability of error
at mostǫ:

Ûk = DS(ES
1 (Sk

1 ), . . . , ES
M (Sk

M ))

Pr(Ûk 6= Uk) < ǫ. (9)

Unfortunately, as of the writing of this paper, there is no
single letter characterization for distributed compression of an
arbitrary many-to-one function. Körner and Marton solvedthe
special case where there are two correlated, uniform, binary
sources and we want to recover their parity [9]. See Section
IV-D.1 for more details. Orlitsky and Roche solved a related
problem where a decoder must recover a function of the source
and a side information random variable [10]. The required rate
is given by a graph entropy characterization and is reviewed
in detail in Appendix I-A. We will use their result to establish
the distributed compression rate region for a restricted class
of functions with independent sources as inputs. Essentially, if
no input symbols can be merged without incurring errors and
the sources are independent, then the sources must be sent in
their entirety.

Lemma 1:Assume that the sources are independent and
the desired function,f , is chosen such that for each pair of
possible source symbols at an encoder,sj, s

∗
j ∈ Sj , there is a

choice ofs1, s2, . . . , sj−1, sj+1, . . . , sM such that:

Pr(f(s1, . . . , sj, . . . , sm) 6= f(s1, . . . , s
∗
j , . . . , sm)) > 0.

Then, the rate required for each decoder for distributed com-
pression off(·) is Rj ≥ H(Sj).

See Appendix I-A for a proof.
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Example 1:Let S1, S2, . . . , SM be independent sources
drawn uniformly from the same alphabet. Then, real addition,
U1 =

∑M

j=1 Sj , and multiplication,U2 = S1 · S2 · . . . · SM ,
satisfy the conditions of Lemma 1.

The distributed compression rate region for complete re-
covery of the sources was characterized by Slepian and
Wolf in [23]. Their classic result shows that the distributed
encoders need only the sum rate of a joint encoder. The
Slepian-Wolf rate region,RSW , is the set of all rate vectors,
(R1, R2, . . . , RM ), satisfying:

R(T) ≤ H(T|TC) ∀T ⊆ S, (10)

whereR(T) =
∑

j∈T Rj (see [22, p.415, Thm.14.4.2]).
Ahlswede and Liao concurrently determined the MAC ca-

pacity region for independent messages [24], [25]. The MAC
capacity region,RMAC, is the closure of the convex hull of the
set of all rate vectors,(R1, R2, . . . , RM ), satisfying:

R(T) ≤ I(X(T); Y |X(TC)) ∀T ⊆ S, (11)

for some product distribution p(x1, x2, . . . , xM ) =
∏M

j=1 p(xj) where X(T) = {Xj : j ∈ T} (see [22,
p.403, Thm.14.3.5]).

Definition 9: The maximum sum rateof a MAC is:

CMAC = max
(R1,R2,...,RM )∈RMAC

M
∑

j=1

Rj . (12)

Definition 10: We say that the maximum sum rate of a
MAC is symmetricif R∗

1 = R∗
2 = · · · = R∗

M where

(R∗
1, R

∗
2, . . . , R

∗
M ) ∈ arg max

(R1,R2,...,RM)∈RMAC

M
∑

j=1

Rj . (13)

A separation-based code consists of a distributed compres-
sion code concatenated with a MAC code. Note that in many
cases, we will choose a ratio of source symbols per channel
use such that the two rate regions intersect and communication
is possible.

Definition 11: A computation rateκ = k
n

is achievable with
separationif:

RMAC(κ) =

{(

R1

κ
, . . . ,

RM

κ

)

: (R1, . . . , RM ) ∈ RMAC

}

Rf ∩RMAC(κ) 6= ∅. (14)

As shown in [1], when we want to send correlated sources
over a MAC, separation is not optimal. Clearly, if we allow
our sources to be correlated but only require a function of
these sources at the decoder, a separation-based scheme may
not be optimal for the same reasons. However, even if we
assume that the sources are independent, we still do not get a
separation theorem as shown in the following example, taken
from Problem 1.1 in [26].

Example 2:Let S1 and S2 be independentB(1
2 ) sources.

Each source is seen by a separate encoder with access to one
terminal of a MAC. The MAC input alphabets areX1 = X2 =
{0, 1} and the output isY = X1⊕X2. The maximum sum rate

of this MAC is clearlyCMAC = 1. At the decoder, we would
like to losslessly computeU = S1 ⊕ S2. Using Lemma 1 and
the data processing inequality, it can be shown that the best
separation-based scheme achieves a computation rate ofκSEP =
1
2 . The separation-based scheme just amounts to using two
channel uses, one for each source. However, simultaneously
placing the sources on the channel (or uncoded transmission),
achieves a computation rate ofκJOINT = 1 which is clearly
optimal by the data processing inequality.

As the example demonstrates, sometimes we can compute
the desired function using the channel. In these cases, joint
source-channel schemes can achieve a much higher computa-
tion rate than separation-based schemes, sometimes a factor
of M higher. Of course, the above example is somewhat
contrived, as the channel performs exactly the operation we
desire. Furthermore, the channel is not noisy, so interference
is the only issue. Our results show that using the channel’s
natural operation to compute a function can give us boosts over
separation-based schemes, even when the channel is noisy.

IV. L INEAR COMPUTATION CODING

In this section, we develop a class of MACs for which we
can find the computation capacity for linear functions.

A. Definitions

Our achievable rates coincide with our upper bounds when
there is an ideal structural match between the channel and the
desired function. More specifically, we require that our MAC
can be written as a linear function over a finite field of its
inputs followed by a symmetric discrete memoryless channel
(DMC) as illustrated in Figure 2. Furthermore, there must bea
one-to-one map from our desired function to a linear function
over the same finite field. If these conditions are met, there
is a joint source-channel code that achieves the computation
capacity. In these perfectly matched cases, separation-based
schemes will fall far short of the optimal performance. For
many of these scenarios, such as sending a sum over a noisy
adder (as in Figure 2), the gap will be proportional toM , the
number of users.

S1 E1
X1

β1

S2 E2
X2

β2

SM EM
XM

βM

...
...

W YpY |W D

Û1

Û2

ÛL

...

Fig. 2. Discrete Linear Multiple-Access Channel

Definition 12: We call a MAC linear with respect toF if
its channel inputs take values on a Galois fieldF and we
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can represent the channel outputY as coming from a discrete
memoryless channel (DMC),pY |W , where:

W =
M
∑

j=1

βjXj (15)

for someβj ∈ F \ {0} where0 is the zero symbol inF. Note
that addition and multiplication are performed overF. Also,
note that if anyβj could take a zero value, then that encoder
would effectively have no channel input. See Figure 2.

In [27], it was shown that linear codes are sufficient for
achieving the maximum sum rate of a linear multiple-access
channel.

We will also need the following definition from [28, p.94]:

Definition 13: We say that a DMC issymmetric if the
output symbols can be placed into subsets such that for each
subset the probability transition matrix satisfies the following
two conditions:

1) Each row is a permutation of every other row.
2) Each column is a permutation of every other column.

Remark 6: It can be shown that the uniform distribution
achieves capacity on symmetric DMCs [24], [29]. This concept
can also be extended to channels with discrete inputs and
continuous outputs such as the binary-input Gaussian channel.
However, in the interests of space, we limit ourselves to
discrete alphabets.

B. Results

We will need a result by Csiszár for linear Slepian-Wolf
coding [30].

Lemma 2 (Csisźar): Let (U1, U2, . . . , UL) be a vector
source generated i.i.d. according to some joint probabiltymass
function (pmf) on a discrete alphabet. For any point in the
Slepian-Wolf rate region andk large enough, there are matrices
H1,H2, ...,HL of sizek×mℓ, respectively, taking values over
a Galois field with associated decoding functionb(·) that can
be used to compress the sources in a distributed fashion with
Pr((Ûk

1 , Ûk
2 , . . . , Ûk

L) 6= (Uk
1 , Uk

2 , . . . , Uk
L)) < ǫ ∀ǫ > 0.

The proof relies on showing that multiplying by a random
matrix is equivalent to random binning. For a full proof, see
[30]. The following lemma appears as Problem 2.1.11 in [31].

Lemma 3:Consider a symmetric DMC with encoder input
W , channel inputX , channel outputY , and capacityC. Both
W and X take values on Galois fieldX . For any ǫ > 0
and n large enough, there exists a matrixG ∈ Xm×n with
associated decoding functionc(·) such that whenx = wG,
Pr(c(y) 6= w) < ǫ if m log |X | < nC.

The basic proof idea is that using a random generator matrix
results in pairwise independent codewords whose entries are
i.i.d. according to a uniform distribution. See [28,§6.2] for
the binary case.

Corollary 1: Lemma 3 also holds for asymmetric DMCs
so long asC, the channel capacity, is replaced withI(W ; Y )
wherep(W ) is taken to be uniform.

Theorem 1:Let f1, f2, . . . , fL be linear functions with re-
spect toF and let Uℓ = fℓ(S1, S2, . . . , SM ). For a linear
MAC with respect toF with symmetricpY |W and capacity
C = maxp(w) I(W ; Y ),

κ =
C

H(U1, U2, . . . , UL)
(16)

is the computation capacity for the vector of desired functions,
U = (U1, U2, . . . , UL).

Proof: (Achievability.) Using Lemma 2, we choose ma-
trices H1,H2, ...,HL of size k × mℓ, respectively, to get
(U1, U2, . . . , UL) to some point in the Slepian-Wolf rate region
with sum rateH(U1, U2, . . . , UL).

Using Lemma 3, we choose a matrixG of size
(
∑L

ℓ=1 mℓ) × n to communicate overpY |W at capacity. We
note that eachβj has a multiplicative inverseβ−1

j .
At each encoder we use the following encoding rule:

tj = [α1jsjH1 αjsjH2 · · · αLjsjHL]

xj = β−1
j tjG.

After the linear operation performed by the channel, we get:

w = β1x1 + β2x2 + · · · + βMxM

w = [u1H1 u2H2 · · · uLHL]G.

The received sequence,y, is just w corrupted by
symmetric noise. Using Lemma 3, we can recover
[u1H1 u2H2 · · · uLHL] from y for any block error proba-
bility ǫ > 0 for n large enough so long as

∑L

ℓ=1 mℓ < nC
log |X | .

Using Lemma 2, we can recoveru1,u2, . . . ,uL for any
block error probabilityǫ > 0 for k large enough so long as
kH(U1,U2,...,UM )

log |X | <
∑L

ℓ=1 mℓ (and the appropriate side rate
constraints are met). This succeeds with probability greater
than1−ǫ for k large enough so long askH(U1, U2, . . . , UL) <

nC.
(Converse.) For this class of MACs, we can simply allow
the encoders to completely collaborate and get a tight upper
bound. This reduces our problem to a point-to-point prob-
lem and we can invoke the separation theorem to get that
kH(U1, U2, . . . , UL) ≤ nC. It immediately follows thatκ ≤

C
H(U1,U2,...,UL) .

If our MAC is linear but its DMC is asymmetric, we can
use the strategy used in Theorem 1 to give an achievable
computation rate.

Corollary 2: If pY |W is asymmetric then the following
computation rate is achievable for sending our vector of
desired linear functions,(U1, U2, . . . , UL):

κ =
I(W ; Y )

H(U1, U2, . . . , UL)
, (17)

whereI(W ; Y ) is evaluated using a uniform distribution on
W .
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Remark 7:Theorem 1 can be easily extended to functions
that have an invertible, entropy-preserving map to linear func-
tions.

If the sources satisfy the conditions of Lemma 1, then we
must transmit them in their entirety to reconstruct our desired
linear functions with a separation-based scheme. Thus,κSEP =

C
P

M
j=1

H(Sj)
is the highest computation rate achievable with

separation. By Theorem 1,κCOMP = C
H(U1,...,UL) is the optimal

computation rate. IfH(U1, . . . , UL) <
∑M

j=1 H(Sj), then
κSEP < κCOMP. For example, if the sources are independent and
our desired function is simply their sum, then the conditions
of Lemma 1 are satisfied andH(U) <

∑M

j=1 H(Sj) so
κSEP < κCOMP.

C. Simple Examples

Our strategy, computation coding, is optimal for linear
MACs when pY |W is symmetric. If pY |W is asymmetric,
computation coding performs better than separation in some
cases and separation performs better in others. We show this
by means of two examples. In the first, computation coding
outperforms separation.

Example 3:Let S1 and S2 be independentB(1
2 ) sources.

The channel inputs,X1 and X2, also take values on
{0, 1} and the channel output,Y , is formed by passing
W = X1 ⊕ X2 through an asymmetric DMC whose
probability transition matrix is given by the following table:

P (Y = y|W = w) y = 0 y = 1
w = 0 0.9 0.1
w = 1 0.5 0.5

We want to sendU = S1 ⊕ S2 over the channel. The
MAC’s maximum sum rate isCMAC = 0.148 whereas the
mutual information induced by a uniform distribution is0.147.
We get thatκSEP = 0.074 by Lemma 1 andκCOMP = 0.147 by
Corollary 2. Note that the achieved computation rate is close
to the upper bound,κJOINT = 0.148, from Lemma 12.

We now give an example with an asymmetric DMC where
separation outperforms computation coding.

Example 4:Let S1 and S2 be independent sources drawn
uniformly over GF(5). The channel inputs,X1 and X2, also
take values on GF(5) and the channel output,Y , is formed by
passingW = X1 ⊕5 X2 through an asymmetric DMC whose
probability transition matrix is given by the following table:

P (Y = y|W = w) y = 0 y = 1
w = 0 1 0
w = 1 0.5 0.5
w = 2 0.5 0.5
w = 3 0.5 0.5
w = 4 0 1

We want to sendU = S1 ⊕5 S2 over the channel. The
MAC’s maximum sum rate isCMAC = 1 and is achieved by
only using input symbols0 and 4. A uniform distribution

induces a mutual information of25 . We get thatκSEP = 1
2

1
log 5

from Lemma 1 and thatκCOMP = 2
5

1
log 5 from Corollary 2. In

this scenario,κSEP > κCOMP. The best upper bound we have on
the computation rate isκJOINT = 1

log 5 using Lemma 12.

This shows that the channel symmetry condition cannot be
removed from the statement of Theorem 1. Unlike the point-
to-point setting, we are not free to create a linear code and
map different length subsequences to channel inputs unevenly
to achieve any distribution (see [28, p.208]). The distributed
nature of computation codes prohibits this kind of non-linear
mapping.

D. Extended Example: Mod-2 Adder MAC

We now explore an example to illustrate some of the key
principles at work in computation coding. Our example centers
on the mod-2 adder MAC (M2MAC) (Figure 3). All operations
are done in GF(2). There are two sources,S1 andS2, generated
from the following joint pdf:

Pr(S1 = 0, S2 = 0) = Pr(S1 = 1, S2 = 1) =
1 − p

2

Pr(S1 = 0, S2 = 1) = Pr(S1 = 1, S2 = 0) =
p

2
. (18)

A simple calculation will show thatS1 andS2 have uniform
marginal distributions. Our goal is to losslessly transmitU =
S1 ⊕ S2 across the channel at the highest computation rate
κ = k

n
. The entropy ofU is given by the binary entropy

function:

hB(p) = −p log p − (1 − p) log (1 − p). (19)

Note that all logarithms in this paper are in base2. The channel
input and output alphabets are identically given byX1 = X2 =
Y = {0, 1}. The channel inputs are added mod-2 to yield
W = X1 ⊕ X2 which is passed through a binary symmetric
channel (BSC) with crossover probabilityq to give Y (see
Figure 3).

S1 E1
X1

S2 E2
X2

W BSCq
Y D Û

Fig. 3. Mod-2 Adder Multiple-Access Channel (M2MAC)

1) Separation: K̈orner-Marton Revisited:Our sources and
desired function are identical to those from the Körner-Marton
problem [9]. By combining the Körner-Marton source coding
scheme with an appropriate MAC code, we will get the optimal
separation-based scheme.

Lemma 4 (K̈orner-Marton): S1 and S2 are separately en-
coded by two source coders at ratesR1 andR2. The mod-2
sum,U , can be reconstructed with Pr(Ûk 6= Uk) < ǫ, ∀ǫ > 0
iff R1 > hB(p) andR2 > hB(p).
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For the M2MAC, the capacity region has only a single
constraint:

R1 + R2 < 1 − hB(q). (20)

Note that this implies that time-sharing is optimal for the
M2MAC.

We can now give the best possible computation rate avail-
able using separation. The sum source coding rate required
is 2hB(p) and the MAC sum capacity is1 − hB(q). Reliable
communication requires thatk(2hB(p)) < n(1−hB(q)). This
gives the optimal separation computation rate of:

κSEP =
1

2

(

1 − hB(q)

hB(p)

)

. (21)

Remark 8:The Körner-Marton scheme allows for a strictly
lower sum source coding rate and thus, a higher computation
rate than Slepian-Wolf coding ofS1 andS2.

2) Computation Coding:The best separation-based scheme
for the M2MAC uses structured source coding to exploit the
source correlations. The channel coding strategy focuses on
avoiding the interference caused by the other user. Yet, the
interference is due to the summation taken by the MAC.
Computation coding exploits this summation by using both
a structured source code and a structured channel code. In
doing so, it can optimally exploit both the source correlations
and the structure of the MAC. An application of Theorem 1
to this scenario yields the following corollary.

Corollary 3: The optimal reliable computation rate for
sendingU = S1 ⊕ S2 over the M2MAC is

κ =
1 − hB(q)

hB(p)
. (22)
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Fig. 4. Comparison of schemes for computing parity over a noisy modulo-2
adder MAC (M2MAC).

Somewhat surprisingly, this strategy allows for a compu-
tation rate twice that of the separation scheme, regardlessof
the source statistics. The computation rates for computation
coding (Corollary 3), the best separation-based scheme (21),

and a suboptimal separation-based scheme that uses Slepian-
Wolf source coding over an M2MAC with crossover proba-
bility q = 0.1 are shown in Figure 4.

3) Discussion:Both our computation coding scheme and
the best separation-based scheme take advantage of the struc-
ture of the function for source coding. The computation coding
scheme goes one step further and takes advantage of structure
of channel. The computation rate is doubled by this structural
gain. This shows that the MAC rate region is an insufficient
characterization of the channel for distributed computation.

The symmetric source pdf (see (18)) used for the M2MAC
example can be changed to any joint pdf and the computation
capacity will still be achieved by the scheme put forth in
Theorem 1. However, for an asymmetric pdf, the Körner-
Marton scheme may not be the best separation-based strategy.
It is only known to be optimal for the symmetric pdf in (18),
as this is the most general pdf that results in uniform marginal
pdfs. Ahlswede and Han showed that if the marginals are not
uniform, there are achievable points outside the Körner-Marton
region [3].

To be more specific, both the Körner-Marton scheme and
computation coding calibrate their codes using the entropyof
the desired function. Körner-Marton fails as a general solution
as it then converts the linear representation into bits, which
destroys the code’s match with the function. The function-
channel match in computation coding allows for a continuous
abstraction of the problem in terms of the underlying finite
field. This is why we are able to meet our upper bounds in
matched cases.

The most interesting aspect of our strategy is that it depends
entirely on codes that were originally intended to reduce
system complexity. Elias’ random linear coding proof was
meant to show that the search for implementable codes is
not futile; all of the benefits of Shannon’s random codebooks
can be transferred into random generator matrices [32]. The
Körner-Marton result and our computation code show that
structured codes can enable rate gains. In particular, structured
codes allow redundancy to be added in a distributed, yet
structured, fashion.

Symmetric, linear MACs seem to be the largest class of
MACs for which our computation codes are optimal. In
the next section, we explore strategies for sending arbitrary
functions over arbitrary MACs.

V. SYSTEMATIC COMPUTATION CODING

We now develop computation codes for sending arbitrary
functions over arbitrary MACs. Our main idea is to use
uncoded transmission followed by an update phase, which can
be thought of as a systematic code.

A. Arbitrary Functions over Arbitrary MACs

In the point-to-point setting, systematic transmission refers
to first sending a block of the source uncoded across the
channel and then using a code to refine the noisy version of the
source [33], [34]. The decoder uses the uncoded block as side
information to infer the source from the received codeword.
Systematic transmission is a good framework for the digital
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upgrade of analog systems. We propose a systematic com-
putation coding scheme that first uses uncoded transmission
to send a noisy function to the decoder and then refines this
function with a separation-based scheme.

We briefly consider the code used in Section IV-D for
sending the parity of binary sources over the M2MAC. Assume
the sources are independent and the channel code is written
in systematic form. This computation coding scheme is also
systematic in that the encoders first send a noisy version of the
desired sum and then refine it with parity-check bits. In this
setting, we allow the channel to merge both the information
bits and the parity-check bits to give a codeword that describes
the sum of the sources. However, for an arbitrary MAC, we
may not able to use the channel to combine our codewords.
Therefore, we only use a joint source-channel code to send
a noisy version of the function. We will then switch over to
a separation-based scheme that uses a linear source code and
a capacity-achieving MAC code at each encoder to refine the
noisy function.

Theorem 2:Let f1, f2, . . . , fL be arbitrary functions and
let Uℓ = fℓ(S1, . . . , SM ). Choose a Galois fieldF, linear
functionsg1, g2, . . . , gL over F and mappingscj : Sj → F

for j = 1, . . . , M andd1, . . . , dL such that:

Pr(dℓ(gℓ(c1(S1), . . . , cM (SM ))) = fℓ(S1, . . . , SM )) = 1

for ℓ = 1, 2, . . . , L. Let Vℓ = gℓ(c1(S1), . . . , cM (SM )). If
the maximum sum rate of the MAC is symmetric1, then the
computation rate

κ =
CMAC

CMAC + MH(V1, V2, . . . , VL|T )
(23)

is achievable for any joint pdf of the form:

pT |X1···XM
(t|x1, . . . , xM )





M
∏

j=1

pXj |Sj
(xj |sj)



 · · ·

· · · (pS1···SM
(s1, . . . , sm)) (24)

where

pT |X1···XM
(t|x1, . . . , xM ) = pY |X1···XM

(t|x1, . . . , xM )

Proof: First, let Cℓj = cℓj(Sj) and let Vℓ =
gℓ(Cℓ1, . . . , CℓM ).

(Uncoded Transmission.) At time step i for 1 ≤ i ≤ k,
encoderj mapsSj [i] into a channel input,Xj [i], according
to pXj |Sj

(xj |sj). The decoder collects the channel outputs to
use as side information in the next phase,T k = Y k.

(Refinement.) Using Lemma 2, we choose matrices
H1,H2, ...,HL of size k × mℓ, respectively, to get
(V1, V2, . . . , VL) to some point in the Slepian-Wolf rate region
of (V1, V2, . . . , VL, T ) with sum rateH(V1, V2, . . . , VL|T ).

At each encoder we compute:

rj = [α1jc1jH1 α2jc2jH2 · · · αLjcLjHL] .

1We assume that maximum sum rate of the MAC is symmetric according to
Definition 10 to simplify the statement of the theorem. This can be removed
for a more general (but more cumbersome) theorem statement.

Each encoder then transmitsrj to the decoder using a multiple-
access channel code:

EC
j : F

P

L
ℓ=1

mℓ → Xn
j ,

targeted at the symmetric maximum sum rate,CMAC . Choose
ǫ > 0. We can recoverr1, r2, . . . , rM at the decoder
with probability of error less thanǫ2 for n large enough if
log |F|∑L

ℓ=1 mℓ < nCMAC. The decoder then computes:

w = r1 + r2 + · · · + rM

w = [v1H1 v2H2 · · · vLHL] ,

where addition is overF. Using Lemma 2, we can re-
coverv1,v2, . . . ,vL from w and t with probability of error
less than ǫ

2 for m1, m2, . . . , mL large enough that satisfy
kH(V1, V2, . . . , VM |T ) < log |F|∑L

ℓ=1 mℓ (and the appro-
priate Slepian-Wolf side rate constraints are met). Finally,
we apply the functionsd1, d2, . . . , dL to recover our desired
function sequencesu1,u2, . . . ,uL. The probability of error is
upper bounded byǫ.

The uncoded transmission phase requiresk channel uses
and the refinement phase requires at leastkMH(V1,V2,...,VL|T )

CMAC

channel uses. Thus, we can achieve any computation rate
satisfying:κ = k

n
< CMAC

CMAC+MH(V1,V2,...,VL|T ) .

Remark 9: In some cases, we will haveH(Sj) <

H(V1, V2, . . . , VL|T ). In this case, encoderj can just sendSj

in its entirety to the decoder to lower the overall computation
rate.

Remark 10:We can recover the classical MAC capacity
region by settingL = M and settingUj = Sj for j =
1, 2, . . . , M . These sources are independent and take values on
the input alphabets of the MAC. Their marginal distributions
assigned by the maximum sum rate achieving distribution for
the MAC.

Remark 11:Theorem 2 can be further generalized by al-
lowing for a different ratio of source symbols to channel
symbols in the uncoded phase. As it is currently stated,
Theorem 2 uses one channel symbol per source symbol in
the uncoded phase. This causes the computation rate to be
upper bounded by1.

Corollary 4: If the mappingsd1, . . . , dL in Theorem 2 are
invertible and entropy-preserving, thenH(V1, . . . , VL|T ) =
H(U1, . . . , UL|T ).

We show that systematic computation coding can outper-
form separation-based coding with the following example.

Example 5:Our setting is basically the same as the
M2MAC (see Section IV-D). For simplicity, we makeS1 and
S2 independentB(1

2 ) processes. The only difference is the
channel performs a real addition,W = S1 + S2, and then
noise is added mod-3 to get the output:Y = W ⊕3 Z. The
additive noiseZ is distributed according toP (Z = 0) = .8
and P (Z = 1) = P (Z = 2) = .1. Our desired function is
the parity of the sources,U = S1 ⊕ S2. We would like to
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apply Theorem 2 for computingU . In the first phase, we just
transmit the sources uncoded (pXj |Sj

(xj |sj) = δ(xj − sj)) to
get side informationT at the decoder. The conditional entropy
of our desired function,U = S1 ⊕S2, is H(U |T ) = 0.60 and
the maximum sum rate of the MAC isCMAC = 0.66. With this
method, we can achieveκCOMP = 0.35. From Lemma 1, we get
that the best separation-based scheme gives a computation rate
of κSEP = 0.33. Interestingly, we can outperform our systematic
scheme by using the quasi-linearity of the channel to merge
codewords. We simply employ the computation code for the
M2MAC from Corollary 3 directly and map the output symbol
2 to 0 at the decoder. This gives us an improved computation
rate ofκ = 0.40. None of these schemes meet the upper bound
given by Lemma 13:κJOINT = 0.66.

The above example shows that our systematic scheme can
be beaten by other strategies. In this case, we mapped our
problem into an M2MAC problem. In general, we can take an
arbitrary MAC and map it to a linear MAC in order to employ
a computation code.

In the next example, we compute the parity of independent
binary sources over a binary multiplying channel.

Example 6:S1 andS2 areB(α) sources. We are interested
in sending the mod-2 sumU = S1 ⊕ S2 over the binary
multiplying channel (BMC)Y = X1 · X2 where X1 =
X2 = {0, 1}. In the first phase, we send the sources uncoded
across the channel and in the second phase, we use a MAC
code to send our update bins. The computation rates for both
separation-based coding (Lemma 1) and our scheme (Theorem
2) are plotted in Figure 5. The upper bound is significantly
higher than both achievable rates and is not shown on the
plot. Our scheme outperforms separation-based coding forα

between approximately0.65 and0.85 (and between0.15 and
0.35 by symmetry). The underlying reason is that these input
distributions get close to the maximum mutual information for
the MAC, resulting in good side information for the second
phase. It is quite surprising that our scheme even moderately
outperforms separation as there is almost no structural match
between the channel and the desired function.

The following example is the dual of the last one: we
compute the product of binary independent sources over a
mod-2 adder.

Example 7:S1 and S2 are independentB(α) sources. We
want to sendU = S1 · S2 over a mod-2 adder. The channel
output is given byY = X1 ⊕X2, X1 = X2 = {0, 1}. We can
losslessly recoverU from V = S1 ⊕3 S2. Our scheme is to
sendS1 andS2 uncoded over the channel for phase one and
then use this as side information to sendV . The computation
rates for both separation-based coding (Lemma 1) and our
scheme (Theorem 2) are plotted in Figure 6. Again, the upper
bound is significantly higher than both achievable rates andis
not shown on the plot. Although the gains are marginal, that
any gains are possible is surprising.

The next example demonstrates that there exists cases where
computation coding is useful for sending a non-linear function
over a noisy non-linear channel.
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Fig. 5. Computing parity over a binary multiplying channel
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Fig. 6. Computing a binary product over a mod-2 adder

Example 8:S1 andS2 are independent sources drawn uni-
formly from {0, 1, 2}. We would like to know whether or not
S1 and S2 are equal:U = 1(S1 6= S2). We can losslessly
recoverU from the linear functionV = S1 ⊕3 2S2 over
GF(3). The channel is justW = 1(S1 6= S2) followed by
a BSC with transition probability0.1 to give Y . We employ
Theorem 2. Our uncoded phase uses the sources directly; there
is no remapping. In the update phase, we sendV . With this
strategy, we get a computation rate ofκCOMP = 0.194. Lemma
1 gives that the best separation-based computation rate is
κSEP = 0.168. Finally, using Lemma 13 we get an upper bound
of κJOINT = 0.578.

B. Detailed Example: Simple Sensor Network

We now give an example that demonstrates the usefulness of
systematic computation coding for computing over a Gaussian
MAC. By using a systematic computation code, we can
balance between using the structure of the MAC to compute
functions and applying the optimal input distribution. The
former is achieved in the uncoded phase and the latter is a
result of the separation-based update phase.

There areM sources, each drawn uniformly and indepen-
dently from{−1, 1}. The encoders must satisfy average power
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N = 0.25 N = 1 N = 10
M COMP SEP UPPER COMP SEP UPPER COMP SEP UPPER
2 0.8663 0.7925 1.0566 0.3555 0.3962 0.5263 0.0458 0.0658 0.0877
10 0.7200 0.2679 0.9898 0.1692 0.1730 0.6391 0.0222 0.0500 0.1847
20 0.6583 0.1585 0.9882 0.1307 0.1098 0.6846 0.0161 0.0396 0.2471
30 0.6226 0.1153 0.9883 0.1138 0.0826 0.7077 0.0132 0.0333 0.2857
40 0.5972 0.0916 0.9885 0.1036 0.0670 0.7224 0.0114 0.0290 0.3131

TABLE I

COMPUTATION RATES FORRELIABLE SUMMATION OF BINARY SOURCES OVER AGAUSSIAN MAC

constraints:

1

n

n
∑

i=1

xj [i]
2 ≤ 1 (25)

for j = 1, 2, . . . , M . The channel output is just the sum of the
channel inputs plus independent Gaussian noise:

Y [i] =
M
∑

j=1

Xj [i] + Z[i], (26)

where{Z[i]}∞i=1 is an i.i.d. Gaussian sequence with mean0
and varianceN . We would like to reliably compute the real
sum of the sourcesU =

∑M

j=1 Sj at the decoder. This example
can be viewed as a simple sensor network model.

For the uncoded part of our scheme, we simply plug the
sources in as channel inputs and collect the channel outputsat
the decoder asT k. ChooseF such that|F| > M . Let cj(sj) =
(sj+1)

2 ∀j andg(b1, b2, . . . , bM ) = b1 ⊕ b2 ⊕ · · · ⊕ bM where
addition is overF. Let d(v) = 2v−M . By applying the results
of Theorem 2, we can get the computation rates given in Table
I. The best separation-based performance is determined using
Lemma 1 and the upper bound is from Lemma 12.

For N = 0.25, our scheme outperforms separation-based
coding by a nice margin. ForN = 1, our scheme only
outperforms separation as the number of users becomes large.
Finally, for N = 10, our scheme is always dominated by
separation. Note that these are only achievable rates for one
particular systematic scheme. By adjusting the constellation
used in the uncoded phase, we can certainly create a better
code. We could also adjust the power allocation between the
first and second phases of our systematic scheme to improve
performance. In the above example, we used the same average
power per symbol across the codeword.

Remark 12:As shown in Example 5, sometimes remapping
the MAC to a linear MAC outperforms systematic coding.
This does not appear to be the case for the Gaussian MAC.
Converting the Gaussian MAC to a discrete linear MAC re-
quires using an input pdf that is far from capacity achieving. In
many regimes, the structural gains obtained from computation
coding over a transformed Gaussian MAC are overshadowed
by the rate penalty due to the bad input distribution.

The above examples show that computation coding is useful
even when the desired function and the channel are not addi-
tion over a finite field. However, it is clear that our systematic
scheme is not ideally matched to the Gaussian MAC, even
if it can give significant gains. This is partially because our
sources are binary but the channel has a continuous input

alphabet. A more natural problem to consider for the Gaussian
MAC is summing Gaussian sources with a mean-squared error
criterion. In the next section, we develop a computation coding
scheme based on lattices for this problem.

VI. L ATTICE COMPUTATION CODING

Channel structure can also be exploited for communicating
continuous-valued functions over MACs. One natural example
is sending the sum of Gaussian sources over a Gaussian MAC.
Here, as in the finite field case, we can use the addition
performed by the MAC to our advantage with structured codes.
Our problem statement is nearly identical to that in SectionII
except that we are willing to tolerate some distortion in our
reconstructed function.

A. Problem Statement

Each encoder,Ej, sees an i.i.d. Gaussian sourceSj ∼
N (0, σ2

S) and faces one terminal of a Gaussian MAC. The
encoders must satisfy average power constraints:

1

n

n
∑

i=1

xj [i]
2 ≤ P ∀j ∈ {1, 2, . . . , M}. (27)

The channel output is just the sum of the channel inputs plus
independent Gaussian noise:

Y [i] =

M
∑

j=1

Xj[i] + Z[i], (28)

where{Z[i]}∞i=1 is an i.i.d. Gaussian sequence with mean0
and varianceN . For everyk source symbols, we are allocated
n = ℓk + r channel uses whereℓ, r ∈ Z+ andr < k. Recall
that κ = k

n
.

Our goal is to reconstruct the sum of the sources,U =
S1 + S2 + · · · + SM , at the decoder with the lowest possible
distortion. Distortion is measured by the usual mean-squared
error criterion:

D =
1

k

k
∑

i=1

E[(Ui − Ûi)
2]. (29)

Lemma 5: If κ = 1, then uncoded transmission is optimal
for sending the sum of i.i.d. Gaussian sources over a Gaussian
MAC and achieves distortion

DUNC = Mσ2
S

N

N + MP
. (30)

Proof: (Achievability.) At each encoder, simply feed a
source symbol, scaled to meet the power constraint, into the
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channel at each time step. At the decoder, we compute the
minimum-mean squared error (MMSE) estimate ofU . This
results in the following distortion:

D = E[(U − Û)2]

= Mσ2
S − (E[UY ])2

E[Y 2]

= Mσ2
S

N

N + MP

(Converse.) We use the upper bound from Lemma 14 in
Appendix II. Recall thatκ = 1.

κ ≤ CMAC

R(D)

log

(

Mσ2
S

D

)

≤ log

(

1 +
MP

N

)

D ≥ Mσ2
S

N

N + MP

Our uncoded scheme achieves the lower bound on distor-
tion. Therefore, uncoded transmission is optimal for sending
sums of Gaussians over a Gaussian MAC. Essentially, this is
the distributed computation extension of the famous fact that
uncoded transmission is optimal for sending a Gaussian source
over an additive white noise Gaussian (AWGN) channel. In
the point-to-point setting, we are able to use a separation
theorem to send a Gaussian source over an AWGN channel
optimally for any ratio of channels uses to source symbols.
However, for computing a sum over a Gaussian MAC, there
is no separation theorem. As in the discrete case, we can
improve our communication system by taking advantage of
the structure of the MAC.

We now give a lower bound on the achievable distortion for
any joint source-channel scheme for this problem.

Corollary 5: The achievable distortion for sending a Gaus-
sian sum over a Gaussian MAC is lower bounded by

DLOWER = Mσ2
S

(

N

N + MP

)

1
κ

. (31)

This bound is an immediate consequence of Lemma 14 in
Appendix II.

B. Lattices for Computation

Lattice codes are the AWGN equivalent of linear codes
for DMCs. A great deal work has gone into showing that
lattice codes can achieve capacity on an AWGN channel and
the rate distortion bound for a Gaussian source [18], [35]–
[39]. Like linear codes, the appeal of lattices was their lower
complexity compared to purely random coding strategies.
However, their structural properties can also be exploitedfor
distributed computation. First, we will need some definitions
from [18].

Definition 14: An n-dimensional lattice, Λ, is a set of
points in R

n such that ifx,y ∈ Λ, then x + y ∈ Λ, and

if x ∈ Λ, then−x ∈ Λ. A lattice can always be written in
terms of a generator matrixG ∈ R

n×n:

Λ = {x = zG : z ∈ Z
n}, (32)

whereZ represents the integers.

Definition 15: A lattice quantizeris a map,Q : R
n → Λ,

that sends a point,x, to the nearest lattice point in Euclidean
distance:

xq = Q(x) = argmin
v∈Λ

||x − v||2. (33)

Definition 16: Let x mod Λ = x−Q(x). For allx,y ∈ R
n,

the modΛ operation satisfies:

((x mod Λ) + y) mod Λ = (x + y) mod Λ. (34)

Definition 17: The fundamental Voronoi region, V , of a
lattice, is the set of all points that are closest to the zero vector:
V0 = {x : Q(x) = 0}.

Definition 18: The normalized second momentof a lattice
is:

G(Λ) =
1

k

∫

V ||x||2dx
[∫

V dx
]1+ 2

k

. (35)

Erez, Litsyn and Zamir showed in [38] that there exist
lattices that are simultaneously good source codes and good
channel codes. These will be extremely useful in our dis-
tributed refinement scheme.

Lemma 6 (Erez-Litsyn-Zamir):There exist sequences of
lattices,Λk, such that the normalized second moment,G(Λk),
is asymptotically optimal:

lim
k→∞

G(Λk) =
1

2πe
, (36)

and with high probability an i.i.d. Gaussian sequence,
{S[i]}k

i=1, with mean zero and varianceG(Λk) falls within
the fundamental Voronoi region,V0,k:

lim
k→∞

Pr
(

{S[i]}k
i=1 ∈ V0,k

)

= 1. (37)

See [38] for a full proof.

In [18], Kochman and Zamir develop an elegant joint
source-channel lattice scheme for sending a Wyner-Ziv Gaus-
sian source over a dirty paper channel. Our distributed re-
finement scheme consists of two main steps. First, we use
uncoded transmission to send a noisy sum to the decoder.
Then, we have each encoder run a version of the Kochman-
Zamir scheme targeted at the desired sum,U . Unfortunately,
there is a penalty for this form of distributedness. The lattice at
each encoder results in channel outputs that violate the power
constraint by a factor ofM . Therefore, we must scale down
our inputs to meet the power constraint and accept the resulting
increase in distortion at the decoder. Still, in many cases of
interest, our scheme outperforms separation as we will see in
Section VI-C.
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Theorem 3:Forn = ℓk, ℓ ∈ Z+, the following distortion is
achievable for sending a Gaussian sum over a Gaussian MAC
so long asP > M−1

M
N :

DLAT = Mσ2
S

(

N

N + MP

)(

MN

N + MP

)ℓ − 1

. (38)

Proof: We will first show the achievable scheme forℓ =
2. We thus have2k channel uses to conveyk sums. We will use
the firstk channel uses for an uncoded transmission phase as in
Lemma 5. The decoder will then form an MMSE estimateÛ of
the sumU = S1 + · · ·+ SM and use this as side information
for the next phase. Thus,U = Q + Û whereQ is an i.i.d.
Gaussian sequence with mean0 and varianceσ2

Q where

σ2
Q = Mσ2

S

N

N + MP
. (39)

Choose a sequence of good lattices,Λk, using Lemma 6
and scale them such that the normalized second moment of
the lattice isMP . Let d1,d2, . . . ,dM be independent dither
vectors drawn uniformly over the fundamental Voronoi region,
dj ∼ Unif(V0,k), and made available to the encoders and
decoder.

Each encoder transmits1√
M

xj where:

xj = [γsj + dj ] mod Λk. (40)

The channel output is given by:

y =
1√
M

M
∑

j=1

xj + z.

The decoder then computes:

t = αy −





M
∑

j=1

dj + γû





r = t mod Λk

=





α√
M

M
∑

j=1

xj + αz −
M
∑

j=1

(dj + γsj) + γq



 mod Λk

=





(

α√
M

− 1

) M
∑

j=1

xj + αz + γq



 mod Λk.

If the second moment of the term inside the modulo operation
does not exceedMP , the second moment of the lattice, then
we can guarantee that:

lim
k→∞

Pr



r =

(

α√
M

− 1

) M
∑

j=1

xj + αz + γq



 = 1. (41)

See [36] for a detailed discussion of the effect of the ditherin
this step. The second moment can be controlled by requiring
that:

(

α√
M

− 1

)2

(M2P ) + α2N + γ2σ2
Q ≤ MP. (42)

This equation will be satisfied by our final choice of the
constantsα andγ. The decoder’s estimate of the sum is given
by:

ˆ̂u = βr + û

= β





(

α√
M

− 1

) M
∑

j=1

xj + αz + γq



+ û

= β





(

α√
M

− 1

) M
∑

j=1

xj + αz



− (1 − βγ)q + u.

This estimate gives the following mean-squared error:

D = β2

(

(

α√
M

− 1

)2

M2P + α2N

)

+ (1 − βγ)2σ2
Q.

We define the following constants:

α =
MP

√
M

MP + N

γ0 =

√

MP

σ2
Q

(

1 − MN

MP + N

)

,

and let γ → γ0 from below ask → ∞. This ensures that
Equation (42) is always satisfied. We also set:

β =
σ2

Qγ

MP
.

As k → ∞, we get that the achieved distortion is:

D = Mσ2
S

N

N + MP

MN

N + MP
. (43)

This proves the theorem forℓ = 2. For all higher values ofℓ,
the scheme can be repeated with the final estimate from the
last refinement taken as side information for the next stage.

Remark 13:A simple achievable scheme for situations
where we do not have an integer number of channel uses per
source symbol is to time share between two integers whose
average gives the proper ratio.

Remark 14:Our scheme is only applicable to the “band-
width expansion” case; i.e. we have more channel uses than
source symbols.

Remark 15:This joint source-channel scheme can be easily
generalized so that we can send a linear function of Gaussian
sources instead of just a sum. Essentially, theγ coefficient in
(40) should be replaced byφjγ at encoderj whereφj is the
desired coefficient for that source (U =

∑M

j=1 φjSJ ).

C. Separation-Based Scheme

We now give the best separation-based scheme for sending
a Gaussian sum over a Gaussian MAC.

Corollary 6: The best achievable distortion for a
separation-based scheme for sending a Gaussian sum
over a Gaussian MAC is given by:

DSEP = Mσ2
S

(

N

N + MP

)

1
κM

. (44)
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This is an immediate consequence of Lemma 11 in Ap-
pendix I-B.

For comparison, note that with repetition coding we can
achieve the following distortion:

DREP = Mσ2
S

N

N + ℓMP
, (45)

wheren = ℓk for someℓ ∈ Z+.

Example 9:Let M = 5, P = 3, N = 1, andσ2
S = 1. The

end-to-end distortions for repetition coding (45), separation-
based coding (Corollary 6), computation coding (Theorem
3), and our lower bound (Corollary 5) are given in Figure
7. Note that as the number of channel uses per source
symbol increases, our scheme performs exponentially better
than separation-based coding.
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Fig. 7. Refining the Sum of Gaussian Sources over a Gaussian MAC, M = 5,
P = 3, N = 1, σ2

S
= 1

D. Computation Rate

We now examine the performance of our scheme in terms of
its computation rate. The results in the previous two sections
were given in terms of distortion per number of channel uses.
This can be thought of as a type of distortion-rate function.For
a better comparison to our results on reliable computation,we
now define a rate-distortion function for distributed refinement.

Definition 19: The computation rate-distortion function,
κ∗(D), is the highest number of functions per channel use that
can be conveyed to the decoder with average distortionD. Let
d(u, û) be the distortion measure of interest. A computation
rateκ(D) = k

n
is achievable if fork large enough there exist

encoders and a decoder:

Ej : Sk
j → Xn

j (46)

D : Yn → Uk, (47)

such that:

Ûk = D(Y n)

1

k

k
∑

i=1

E[d(U [i], Û [i])] = D. (48)

An upper bound on the joint computation rate-distortion
function and the separation-based computation rate-distortion
function are given below:

κ∗
UPPER(D) =

log
(

1 + MP
N

)

log
(

Mσ2

S

D

) (49)

κ∗
SEP(D) =

log
(

1 + MP
N

)

M log
(

Mσ2

S

D

) . (50)

Note that our upper bound isM times higher that the best
separation-based rate just as in the reliable case. We now give
the computation rates for computation coding and repetition
coding for the case whenn = ℓk for someℓ ∈ Z+:

κCOMP(D) =
log
(

1 + MP
N

)

− log M

log
(

Mσ2

S

D

)

− log M
(51)

κREP(D) =
DMP

N(Mσ2
S − D)

. (52)

For rates that do not satisfyn = ℓk we can find the
computation-rate distortion function by time-sharing between
points that do satisfy the constraint.

Example 10:Let M = 5, P = 4, N = 1, and σ2
S = 1.

The computation rates for our upper bound (49), computation
coding (51), separation-based coding (50), and repetition(52)
are given in Figure 8. We only plot computations rates lower
than1 as our scheme is only useful in the bandwidth expansion
regime (0 ≤ κ ≤ 1.)
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Our lattice computation coding scheme performs signifi-
cantly better than the best separation-based scheme so long
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as the power per user exceeds the noise variance. However,
the distortion achieved by our scheme is also much higher
than that given by the lower bound. Future work will focus on
closing this gap. We now turn to an application of computation
coding to give the capacity for a particular network coding
problem.

VII. M ULTICASTING OVER FINITE FIELD MAC
NETWORKS

In this section, we demonstrate that computation coding
is not only useful for problems that explicitly require the
distributed computation of functions; it is also useful for
achieving the capacity of certain networks. We look at a class
of networks that include linear MACs for which computation
coding is a natural way to find the multicast capacity. The lin-
ear MACs act as coding points when needed and computation
coding is used to ensure that the resulting outputs are reliable.

Our setup is very similar to the network coding problem
[13], with the addition of MACs. The usual network,G, con-
sidered in a network coding problem consists of the following
elements:

1) V : the encoder/decoder nodes in the network. Each node,
v, has a unique label taken from the integers.

2) E : the directed, point-to-point, noiseless links. Each link
is labelled by a triple(v1, v2, r) wherev1 andv2 are the
source and destination node labels andr ∈ R+ is the
capacity.

3) vS : the source node. One element ofV .
4) (vR

1 , vR
2 , . . . , vR

L ): the receiver nodes. Each one is an
element ofV .

See Figure 9(b) for an example of such a network.

Definition 20: A multicast rate,R, is achievableif ∀ǫ ∈
(0, 1) andn large enough there exist encoding and decoding
functions for the network such that:

Ŵℓ = fvR
ℓ
(Y n

vR
ℓ
)

Pr
(

{Ŵ1 6= W} ∪ · · · ∪ {ŴL 6= W}
)

< ǫ, (53)

whereW ∈ {1, 2, . . . , 2nR}.

Definition 21: The multicast capacityis the supremum of
all achievable multicast rates.

A simple upper bound is the max-flow min-cut theorem of
Ford and Fulkerson. In [13], it was shown that for a network of
point-to-point channels the multicast capacity is given bythe
max-flow min-cut theorem. For each receiver, calculate the
maximum information flow across all cuts that separate the
source node from that receiver. The multicast capacity is the
minimum of all these max-flow values taken over all cuts and
receivers. In [14] and [15], it was shown that linear encoding
and decoding over a finite field is sufficient to achieve the
multicast capacity. Bounds are also given on the required field
size. For our computation coding scheme to work, we will
need that the field used by the network code is identical to
the field of the MACs. It was independently and concurrently
shown by Ho et al. in [40], Jaggi et al. in [41], and Sanders

et al. [42] that the field size only needs to be larger than
the number of receivers. We reproduce the version from [40]
below.

Lemma 7 (Ho et al.):Let G = (V , E) be a standard net-
work of noiseless, directed, rate-limited links with a single
source andL receivers. The multicast capacity is given by the
max-flow min-cut bound and can be achieved by an algebraic
network code over any finite field larger thanL (Fq, q > L).
The encoding function of each node (except the receivers) is
a memoryless, linear combination of all its inputs:

Xv[i] =

M
∑

j

αvjYvj [i]. (54)

where Yvj [i] is the value seen by nodev at time i on its
j th incoming edge andYvj [i], αvj ∈ Fq for all v ∈ V \
{vR

1 , vR
2 , . . . , vR

L}.

For a full proof, see [43].

A. Problem Setup

First, we constrain all MACs in our network to be linear
with respect to the same field,F. We also assume that the MAC
noise processes are independent of each other. This restriction
on the MACs is necessary to give tight upper bounds on
the multicast capacity. Note that computation coding can be
beneficial even if some of the MACs are nonlinear [20].
However, our primary objective in this section is to show that
computation coding is sometimes a useful tool to get all the
way to capacity.

A finite field MAC network,GMAC , consists of the following
elements:

1) VN : the encoder/decoder nodes of the network. Each
node,v, has a unique label taken from the integers (v ∈
Z+) and consists of a decoding functiongvjv for each
incoming edge(vj , v) and an encoding functionfvvk

for
each outgoing edge(v, vk).

2) vS : the source node. One element ofVN .
3) (vR

1 , vR
2 , . . . , vR

L ): the receiver nodes. Each one is an
element ofV .

4) VMAC: the MACs in the network. Each MAC,m, has a
unique label (even from the elements ofVN ) taken from
the integers (m ∈ Z+). We also define a functionc(·)
such thatc(m) equals the maximum sum rate of MAC
m.

5) ENN : the directed point-to-point channels in the net-
work. Each channel is labelled by a triple(v1, v2, r)
wherev1 and v2 are the source and destination labels
andr is the capacity.

6) ENM : the input edges from nodes to MACs. Each edge
is represented by a pair(v, m) which means that node
v has an input into MACm.

7) EMN : the output edges from a MAC to a node. To
simplify our main proof, we assume that each MAC only
has an input into one node. Note that by introducing
intermediate nodes in the graph we can exactly simulate
the effect of the MAC output broadcasting to multiple
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nodes. Each edge is given by a pair(m, v) which means
that the output of MACm is fed into nodev.

8) Xvjvk
[i]: the channel input on the edge(vj , vk) at time

i.
9) Yvjvk

[i]: the channel output on the edge(vj , vk) at time
i.

See Figure 9(a) for an example of such a network. Achiev-
ability and capacity for multicasting over a finite field MAC
network are defined identically as in the original network
coding problem (Definitions 20 and 21).

Remark 16:Note that the linear MACs that are used in this
network have a capacity region that can be described by a
simplex. In other words, a single user can reach the optimal
input distribution on its own. Thus, all of the benefits from
using our codes in this problem are due to structural gain not
collaborative gain.

B. Multicast Capacity

We will now show that the max-flow min-cut bound is
achievable even if there are linear MACs in the network. Note
that in the cut between each receiver and the source, each
MAC is evaluated based on its sum rate. At first, this suggests
that our outer bound is loose since the receivers may compete
for part of each MAC’s sum rate. However, by incorporating
computation coding into an overall network code, we can
exploit the operation of each MAC for our network code. If
we assume that the MAC field sizeq is larger than the number
of receivers in the networkL, then we can find an achievable
scheme that meets the outer bound.

Theorem 4:The max-flow min-cut bound for multicasting
is achievable for a finite field MAC network,GMAC , if |F| >

L, where |F| is the MAC field size andL is the number of
receivers in the network.

Proof: (Achievability.) First, we will transform our
network of noisy MACs and point-to-point channels,GMAC,
into a network of noiseless, point-to-point links,G′. Then, we
will find an appropriate network code using Lemma 7. Finally,
we will map this network code to our original network using
computation codes and classical channel codes.

The nodes,V ′, of our transformed network are the original
encoder/decoder nodes plus one new encoder/decoder node for
each original MAC:

V ′ = VN ∪ VMAC.

The noiseless links,E ′, of our transformed network come
in three types. First, we have links between nodes that were
originally connected by the point-to-point channels,ENN .
The capacity of each of these links is given by the capacity
of the original point-to-point channel. Second, we take the
original MAC inputs from nodes,ENM , and convert these
into links between the inputting nodes and the new stand-in
MAC nodes. These links have infinite capacities. Finally, we
take the original MAC outputs to nodes,EMN , and convert
these into links between the new stand-in MAC nodes and the

observing node. These links have capacities given by the sum
rate capacity of the original MAC. This transformation can be
summarized as:

E ′ = ENN ∪ {(v, m,∞)|(v, m) ∈ ENM} · · ·
· · · ∪ {(m, v, c(m))|(m, v) ∈ EMN}.

The new network,G′ has the same max-flow min-cut
characterization as our original network,GMAC. ChooseR < C

whereC is the multicast capacity ofG′ and chooseǫ > 0.
Using Lemma 7, we can find an algebraic network code over
the field F that achieves a multicast rateR over G′ with an
error probability less thanǫ

2 . This algebraic network code
describes an input-output relationship for each node that we
will duplicate on our original MAC network over a long block
length.

Let K = |ENN |+ |EMN | be the number of channels in the
original network,GMAC. For each stand-in MAC node in the
transformed network we create a computation code for the
MAC, m ∈ VMAC, in the original network. The computation
code is targeted at the linear function overF used to process
inputs in the stand-in MAC node. This linear function,Um,
can be sent over the MAC at any computation rateκ <

c(m)
H(Um)

with an error probability less thanǫ
2K

using Theorem 1.
Our scheme uses the networkBn times, divided intoB

blocks each of lengthn. In a block of lengthn, each node,
v ∈ VN , takes the received sequence of channel symbols
from the previous block and decodes them to determine the
messages sent from all incoming links. The messages are
assumed to be sequences of values overF. It then takes these
messages and computes the linear functions assigned to it in
the transformed network. The output of these functions are
then sent over the appropriate point-to-point channels inENN

using a capacity-achieving code with error probabilityǫ
2K

. The
functions intended for stand-in MAC nodes in the transformed
network are mapped to the appropriate computation codes
designed above. Thus, over a long block, each node and MAC
emulates the function assigned to it in the transformed net-
work. Since the rate assignments in the transformed network
are appropriately chosen, all functions can be sent without
violating their respective channel capacities. However, in the
initial blocks, not every node sees incoming symbols owing to
delays in the network. By choosingB (andn) large enough,
we can overcome this delay and approach the target rate.

Finally, we get that the network code is successful if the
algebraic network code is successful and no block errors are
made on any channel in the network. By the union bound, we
get that this error probability is less thanǫ which completes
the proof.

(Converse.) Since our network transformation can only
increase the multicast capacity of the network and we can
achieve any rate less than the transformed capacity, we get
that our scheme meets the max-flow min-cut bound.

We have shown that for channel networks that include
MACs, computation coding is helpful for multicasting. Specif-
ically, for certain links, we are only interested in sending
functions of the input bits. If the communications bottleneck
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on that link is a MAC, then computation coding can increase
the overall network throughput. If all of the MACs in our
network are perfectly matched to linear functions, which isthe
case with linear MACs, then we can give an overall network
code that achieves the max-flow min-cut bound.

Overall, our results indicate that structured joint source-
channel codes are necessary for the analysis of general net-
work capacity, even if we are only interested in communicating
bits. This is similar to the conclusion reached by Körner and
Marton in [9] for the many-help-one source-coding problem.
This may indicate that purely random coding techniques will
not be able to achieve the capacity of a general network,
some structure is needed. For a general network of multi-user
channels, a complete analysis may be intractable due to the
complications introduced by the various channel structures and
the seeming necessity of structured codes.

C. Detailed Example: Butterfly Network

We now develop a simple example for which computation-
based network coding provides a clear advantage over
separation-based network coding. Consider the channel net-
work in Figure 9(a). Each vertex on the graph represents a
decoder/encoder pair. The labeled edges represent noiseless
bit pipes each with capacity C. At the center of the graph is
an linear MAC with inputsX1 (from the left) andX2 (from
the right) and outputY given byY = X1 ⊕3 X2 ⊕3 Z where
Pr(Z = 0) = 1 − q and Pr(Z = 1) = q. We would like to
determine the multicast capacity,CN , of this network.

(a)

C

Ŵ1

C

Ŵ2

W

C C

MAC

C

C C

(b)

C

Ŵ1 Ŵ2

C

W

C C

C

RMAC
1 RMAC

2

C C

Fig. 9. (a) Multiple-Access Network Coding Example (b) Converting MAC
into bit pipes

1) Separation-Based Network Coding:Given the network
in Figure 9(a), one might choose to use standard channel cod-
ing strategies coupled with network coding. Using a multiple-
access code, we can convert the network of noisy channels
into a network of noiseless bit pipes (see Figure 9(b)). Then,
we can find a network code for our network of bit pipes.

Using a standard MAC code, we can allocate a rateRMAC
1

for the left user and a rateRMAC
2 for the right user. The capacity

region,RMAC , is the set of all rate pairs,(R1, R2), satisfying
R1 + R2 < 1 − hB(q).

Lemma 8:For the channel network in Figure 9(b), the
multicast capacity is

CSEP = min

(

2C, C +
log 3 − hB(q)

2

)

. (55)

The proof follows from a simple application of the max-
flow min-cut bound and network coding. The key is to send
the parity of the left and right bitstreams down the center path.
See [13] for more details.

2) Computation Coding:If we only consider the structure
of the function for source compression and treat the MAC like
two bit pipes we cannot achieve the optimum performance. By
using a linear network code and a linear channel code, we can
take advantage of the channel’s natural operation to reliably
compute a function for the network code.

Corollary 7: For the channel graph from Figure 9(a) with
a mod-3 adder MAC, the multicast capacity is

CN = min (2C, C + log 3 − hB(q)). (56)

This is an immediate consequence of Theorem 4. Thus,
incorporating the natural function computed by the MAC into
a network code can outperform a separation-based scheme.

Remark 17:The field size requirements in Theorem 4 are
not tight. If we placed an M2MAC in the center of Figure
9 (a), we could still achieve the max-flow min-cut bound by
sending mod-2 sums down the center path using the code from
Corollary 3.

Remark 18:We can find more examples of computation
coding beating separation by incorporating the MACs from
Example 5 or Section V-B and determining the computation
rate for sending a mod-2 sum over these channels. See [20]
for more details.

D. Discussion

We now have that channel-network separation cannot com-
pletely characterize the multicast capacity of networks that in-
cludes MACs. A similar conclusion was reached for networks
that include deterministic broadcast channels by Ratnakarand
Kramer in [17]. Ramamoorthy et al. showed that source-
channel separation does not hold for multicasting more than
one source to multiple receivers in [44]. All of these results
imply that both structural considerations and source depen-
dencies are necessary to characterize the capacity of channel
networks. For general channel models, these considerations
may put the optimal solution out of reach given current tools.
However, for certain classes of channel models it should be
possible to give capacity results by choosing codes that are
appropriately matched as was done for linear MACs in this
section.

VIII. C ONCLUSIONS

We have developed a tool, computation coding, that is useful
for reliable distributed computation over MACs. This coding
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technique essentially consists of using the same structured
source code (targeted at the desired function) at each encoder
followed by a capacity-achieving channel code. For certain
classes of channels, such as discrete linear MACs and the
Gaussian MAC, structured channel codes can achieve the
computation capacity. In these cases, our computation codes
can take full advantage of the channel operation to compute the
desired function: individual codewords can actually be merged
directly on the channel. In these cases, computation coding
does much better than separation, sometimes with gains that
are proportional to the number of users. In other cases, we
do not exploit the channel operation for the full duration of
our scheme, only in an initial uncoded phase. The resulting
systematic computation code shows that there are gains to be
had even in mismatched cases such as binary addition over a
binary multiplying channel in Example 6.

The underlying codes that make up our computation codes
are essentially the same as the structured codes being de-
veloped for practical use. Furthermore, our schemes can be
viewed as having a source coding part followed by a channel
coding part; the main difference from separation-based coding
is that we do not force a representation in bits, we only use
the underlying alphabet of our desired function. The channel
coding part of our computation codes remains unchanged if
we change the desired function but leave the channel the same.
Thus, our strategies are of relatively low complexity and are,
in a sense, modular.

We have also shown through a case study that these coding
strategies can be useful in analyzing the capacity of networks
that include MACs. We suspect that similar applications of
an optimal computation code for Gaussian MACs may yield
insights into the capacity of AWGN networks. At the very
least, it seems clear that structural considerations cannot be
ignored if we want to characterize the capacity of large
networks.

APPENDIX I
BOUNDS FORSEPARATION-BASED SCHEMES

In this appendix, we will develop two inner bounds on the
distributed compression rate region. The first is a bound on
distributed, reliable computation. The second is a bound for
computing the sum of independent Gaussian sources as in
Section VI-C.

A. Separation-Based Reliable Computation

For the first bound, we will need a result of Orlitsky and
Roche for computing with side information [10].

Let S1 andS2 be sources according to Definition 1 and let
f : S1 × S2 → U be the desired function.

Definition 22: The elements ofS1 are the vertices of the
characteristic graph, G, of S1, S2, and f . Two distinct ver-
tices, a and b, are connected if there is ac ∈ S2 such that
pS1S2

(a, c), pS1S2
(b, c) > 0 and f(a, c) 6= f(b, c). We say

the graph iscompleteif each vertex is connected to every
other vertex.

We say a set of vertices is independent if no two are
connected. LetΓ(G) be the collection of independent sets of
the graphG.

Definition 23: The conditional graph entropyis given by:

HG(S1|S2) , min
W−S1−S2

S1∈W∈Γ(G)

I(W ; S1|S2), (57)

whereW − S1 − S2 signifies a Markov chain.

Lemma 9 (Orlitsky-Roche):Two sources,S1 and S2, are
generated from the joint pmfpS1S2

. An encoder observesS1

and must send enough bits to a decoder that seesS2, such that
the decoder can reconstructU = f(S1, S2) with a vanishing
probability of error:

E : Sk
1 → {0, 1}kR (58)

D : {0, 1}kR × Sk
2 → Uk (59)

Ûk = D(E(Sk
1 ), Sk

2 )

lim
k→∞

P (Ûk 6= Uk) = 0. (60)

This is possible iff:

R > HG(S1|S2). (61)

We will use this side information result to generate individ-
ual rate constraints on separation-basd schemes for distributed
compression. There areM sources and a desired functionf(·).
Let SC

j = (S1, S2, . . . , Sj−1, Sj+1, . . . , SM ).

Lemma 10:The rate required for each encoder of a
separation-based scheme for distributed compression ofU =
f(S1, S2, . . . , SM ) is lower bounded by

Rj ≥ HG(Sj |SC
j ) ∀j ∈ {1, 2, . . . , M}. (62)

Proof: At encoderj, assume that all other sources are
available at the decoder. Clearly, this can only decrease the
rate required of encoderj. An application of Lemma 9 gives
that a rate ofHG(Sj |SC

j ) is required from each encoder to
reconstructf(S1, S2, . . . , SM ) losslessly at the decoder.

Proof of Lemma 1: We need the conditional graph entropy
at each encoder used in the proof for Lemma 10 above. The
characteristic graph for each encoder is complete. Therefore,
the independent sets are the singletons andW = Sj . It follows
that HG(Sj |SC

j ) = I(W ; Sj |SC
j )) = H(Sj|SC

j ) = H(Sj).

B. Separation-Based Gaussian Summation

We now show that if we want to reconstruct the sum of
independent Gaussian sources by separation, the encoders can
do no better than send their sources to the decoder.

Lemma 11:Let S1, S2, . . . , SM be i.i.d. Gaussian sources
with mean0 and varianceσ2

S . There areM source encoders
each observing one of the sources and conveying bits to a
decoder that must reconstructU = S1 + S2 + · · ·+ SM . Dis-
tortion is measured by the usual mean-squared error criterion:
D = E[(Û − U)2]. The sum rate distortion function is

R(D) =
M

2
log

(

Mσ2
S

D

)

. (63)
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Proof: (Converse.) Let fj : R
k → {1, 2, . . . , 2kRj} be

thej th source encoding function and letWj = fj

(

{Sj[i]}k
i=1

)

be the message output by this encoder for a lengthk block
of source symbols. GivenW = (W1, W2, . . . , WM ) at the
decoder, the minimum-mean squared estimate (MMSE) ofU

is given by the conditional expectation.

D =
1

k

k
∑

i=1

E[(U [i] − Û [i])2]

≥ 1

k

k
∑

i=1

E[(U [i] − E[U(i)|W])2]

(a)
=

1

k

k
∑

i=1

E











M
∑

j=1

Sj [i] − E





M
∑

j=1

Sj [i]
∣

∣

∣W









2






(b)
=

1

k

k
∑

i=1

E











M
∑

j=1

Sj [i] − E





M
∑

j=1

Sj [i]
∣

∣

∣Wj









2






(c)
=

1

k

M
∑

j=1

k
∑

i=1

E[(Sj [i] − E[Sj [i]|Wj ])
2]

(d)
≥

M
∑

j=1

σ2
S2−2Rj

(a) by linearity of expectation
(b), (c) by independence ofSi andSj for all i 6= j

(d) by the single source rate distortion converse (see [22, pp.
350-351])

Minimizing the function
∑M

j=1 σ2
S2−2Rj is just a con-

vex optimization problem subject to the convex constraint
∑m

j=1 Rj = R. It easily follows that the minimizing solution
satisfiesR1 = R2 = · · · = RM . We obtain:

D ≥ Mσ2
S2−2 R

M

R(D) ≥ M

2
log

(

Mσ2
S

D

)

.

(Achievability.) Each encoder simply uses a standard Gaussian
rate distortion code for its source with distortion targetDj =
D
M

. Such a code requires a rate of at least1
2 log

(

Mσ2

S

D

)

per
encoder. See [22, pp. 351-358] for the derivation of such
a code. The decoder recovers each source and sums the
individual estimates to get an estimate of the desired sum at
distortionD.

APPENDIX II
COMPUTATION CAPACITY UPPERBOUNDS

In this appendix, we give two upper bounds on the com-
putation capacity and one upper bound on the computation
rate-distortion function. Our first bound comes from joining
the encoders and reducing our problem to a point-to-point
problem.

Definition 24: The maximum joint sum rateis the highest
sum rate one can achieve on a MAC if the encoders are
allowed to cooperate completely. It is given by:

CJOINT = max
p(x1,x2,...,xM )

I(X1, X2, . . . , XM ; Y ). (64)

Lemma 12:The reliable computation rate is upper
bounded:

κJOINT ≤
CJOINT

H(U)
. (65)

The proof follows immediately from joining the encoders
and applying the point-to-point separation theorem. See [22, p.
216] for a full proof of the point-to-point separation theorem.

Our second bound is for the case when the sources are
independent. We assume that the multiple-access channel has
a symmetric maximum sum rate,CMAC , according to Definition
10. This assumption can be removed for a more general
statement of the lemma below.

Lemma 13:If the sources are independent and the max-
imum sum rate of the MAC is symmetric then the reliable
computation rate is upper bounded by

κIND ≤ CMAC

H(U)
. (66)

Proof: Let Pe = Pr(Ûk 6= Uk). By Fano’s inequality,
we can show thatH(Uk|Y n) ≤ 1 + kPe log |U|. Now, set
λk = 1

k
+ Pe log |U|.

H(U) =
1

k
H(Uk)

=
1

k
(H(Uk) − H(Uk|Y n) + H(Uk|Y n))

=
1

k
(I(Uk; Y n) + H(Uk|Y n))

≤ 1

k
I(Uk; Y n) + λk

≤ 1

k
I(Xn

1 , Xn
2 , . . . , Xn

M ; Y n) + λk

where the last step is due to the data processing inequality.
From here we are free to apply the standard MAC converse
(see [22, pp.399-402]):

k

n
≤ I(X1, X2, . . . , XM ; Y )

H(U)
.

for some pdf of the form
∏M

j=1 pXj
(xj). The result follows

immediately.

It is also possible to give an upper bound that factors in the
exact nature of the source correlations as in [45]. However,
the focus of this paper is on the gains that can be achieved
by exploiting the structure rather than the correlations. All of
our examples have independent sources so such a bound is
unnecessary for the scope of this paper.

Finally, we upper bound the computation rate-distortion
function for the case when the sources are independent and
the MAC has a symmetric maximum sum rate.
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Lemma 14:If the sources are independent and the max-
imum sum rate of the MAC is symmetric the computation
rate-distortion function is upper bounded:

κ(D) ≤ CMAC

RU (D)
. (67)

where RU (D) is the rate-distortion function of the desired
function,U = f(S1, S2, . . . , SM ).

Proof: Let d(u, û) be the distortion measure andS[i] =
(S1[i], S2[i], . . . , SM [i]).

kRU (D) = kR(E[d(Uk, Ûk)])

= kRU

(

1

k

k
∑

i=1

E[d(U [i], Û [i])]

)

(a)
≤ k

k
∑

i=1

1

k
RU (E[d(U [i], Û [i])])

=
k
∑

i=1

RU (E[d(U [i], Û [i])])

(b)
≤

k
∑

i=1

I(S[i]; Ûi)

=

k
∑

i=1

h(S[i]) −
k
∑

i=1

h(S[i]|Û [i])

(c)
≤

k
∑

i=1

h(S[i]) −
k
∑

i=1

h(S[i]|Ûk,S[i − 1], . . . ,S[1])

(d)
= h(Sk) − h(Sk|Ûk)

= I(Sk; Ûk)
(e)
≤ I(Xn; Y n).

(a) by convexity ofR(D)
(b) by definition ofR(D)
(c) since conditioning reduces entropy
(d) by the chain rule for entropy
(e) by the data processing inequality
From here we are free to apply the standard MAC converse
(see [22, pp.399-402]):

k

n
≤ I(X1, X2, . . . , XM ; Y )

RU (D)
.

for some pdf of the form
∏M

j=1 pXj
(xj). The result follows

immediately.
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