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Abstract— We study the multicasting problem for additive
white Gaussian noise (AWGN) networks with both point-to-point
and multiple-access links. The recent discovery of networkcoding
has shown that routing is suboptimal for networks of point-to-
point channels: messages must be mixed at intermediate nodes.
We showed in earlier work that if a network includes multiple-
access channels (MACs) then converting these channels intobit
pipes with a channel-network separation-based approach isalso
suboptimal: the MACs should be used to compute functions
reliably as part of an overall network code. In this paper, we
give a lattice-based coding strategy for reliably computing linear
functions over Gaussian MACs. We then give a computable
statement of rates achieved by the resulting network code. In
many interesting cases, our achieved rates are higher than those
accessible to a separation-based scheme. Our results show that
structured codes can be used to derive achievable rates for multi-
user communication problems that have been outside the reach
of standard i.i.d. random coding arguments.

I. I NTRODUCTION

The celebrated paper of Ahlswede et al. showed that routing
is insufficient to achieve the multicast capacity of point-to-
point channel networks [1]. Instead, some intermediate nodes
in the network should only send out a function of their
incoming messages. The receivers, given an appropriate set
of functions can successfully decode the original messages.
This strategy is referred to asnetwork codingand much work
has focused on simplifying and linearizing the underlying code
construction (see, for instance, [2]–[6]).

If the channel network includes multi-user channels as well
as point-to-point links, it is intuitively clear that network
coding will be part of the overall solution. It has also been
shown that separating channel and network coding is not
always possible. For instance, for deterministic broadcast net-
works, Ratnakar and Kramer showed that only joint channel-
network coding is optimal [7]. In earlier work, we showed
that if the channel network includes finite field multiple-
access channels (MACs), these channels should ideally be
used to compute reliable functions of their messages rather
than be reduced to bit pipes via channel-network separation
[8], [9]. The key insight is that functions well-matched to the
structureof the probability transition matrix of the MAC can
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Fig. 1. (a) Example of a Gaussian Multiple-Access Network. (b) Using a
lattice-based code, we can achieve any rate on the original network that is
reachable on this network. Here,RLAT
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be reliably computed at a much higher rate using a structured
random code. In many cases of interest, the rate increase is
proportional to the number of users. Thisstructural gain is
quite different fromcollaborative gainwhere the transmitters
use message dependencies to access more favorable channel
input distributions. For network coding, additive MACs are
ideal as they are extremely well suited for reliably computing
linear functions. In this paper, we show how to efficiently
exploit Gaussian MACs as part of an overall network code.

To take advantage of the structure of Gaussian MACs, we
introduce a new strategy:compute-and-forward. Nodes in the
network that observe the output of a MAC will effectively only
decode a linear function of the messages. This allows us to
examine a reduced network where the MACs are replaced with
nodes with the same connectivity. The capacities of these links
will be given by thelinear processing rateof the MAC. As we
will see, any multicast rate achievable on the reduced point-
to-point network will be achievable on the original MAC.

Other authors have independently considered using the
additive structure of wireless MACs for network coding “on
the air.” Bhadra, Gupta, and Shakkottai use channel fading and
the channel’s summation to achieve the multicast capacity of
a fading finite-field MAC network as the field size grows [10].



Zhang, Liew, and Lam take a communications perspective
and use uncoded transmission to send mod-2 sums of bits at
lower bit error rates than possible with separate transmissions
[11]. Katti, Gollakota and Katabi simulate a practical system
that uses a clever scheme to add bits using the phases trans-
mitted signals [12]. However, from an information theoretic
perspective, uncoded transmission cannot be effective over a
large network. The error from these uncoded transmissions can
quickly build up over several hops and will drive the resulting
rate to zero as the noise will become part of the signal we
are attempting to relay to the receivers. In order to avoid
propagating noise, we need to reliably decode the functions
at every node.

Structured codes are essential for efficiently reliably com-
puting functions over MACs. The underlying idea follows
from a classic result of Körner and Marton [13]. In their
consideration, a central decoder wants to reconstruct the parity
of two correlated sources seen by separate encoders. By using
the same linear codebook at each encoder, the decoder can
recover the parity from the sum of the received codewords.
Their work was (to the best of our knowledge) the first
situation where structured codes were needed to complete the
achievability proof. In earlier work, we showed that linear
codes can be used as part of a compute-and-forward strategy
for achieving the multicast capacity of a noisy finite field
multiple-access network [9]. In this paper, we use latticesas
a building block for our overall code showing that structured
codes are useful for solving AWGN network problems as well.
A similar conclusion was reached in [14] where lattices are
used to achieve rates inaccessible to standard i.i.d. random
codes for a MAC with interference known at the transmitters.
In [15], the authors use lattice codes to increase rates for a
two-way relay AWGN problem. In [16], lattices are used to
improve the sum rate for the distributed compression of the
difference of correlated Gaussians.

The paper is organized as follows. In Section II, we give a
formal problem statement. In Section III, we state our main
result and outline the proof. In Section IV, we show how to
connect the multicast problem to a source-channel problem
which is easier to analyze. In Section V, we give definitions
and outline useful results from lattice channel and source
coding theory. In Section VI, we give our lattice-based codefor
Gaussian-multiple access networks. In Section VII, we lookan
AWGN butterfly network as an example. Finally, in Section
VIII we discuss open problems and future directions.

II. PROBLEM STATEMENT

We now give a formal problem statement for multicasting
information over Gaussian multiple-access networks. Boththe
point-to-point and the multiple-access channels in the network
are AWGN channels. To simplify the statement of our results,
we assume that all transmitters face the same power constraint
and that the network is acyclic. The signal-to-noise ratio (SNR)
for each channel will be set by adjusting the noise variances.

Remark 1:Note that setting all the power constraints to
be equal enforces that for a given MAC, each user has

the same SNR. This limitation can be removed for a more
general statement of our main theorem and we provide a brief
sketch of the argument in Section VII. Similarly, we can also
characterize cyclic networks but this is also beyond the scope
of this paper.

Definition 1: A point-to-point AWGN channelis given by:

Y [i] = X [i] + Z[i] (1)

whereX [i], Z[i], andY [i] are the channel input, noise, and
channel output at timei respectively. The noiseZ is an i.i.d.
Gaussian random variable with mean0 and fixed variance.

Remark 2:We could replace the point-to-point AWGN
channels in the network with any memoryless channels with
the same capacities and our main result would remain the
same. However, it is convenient to work in terms of Gaussian
channels.

Definition 2: A Gaussian multiple-access channelis given
by:

Y [i] =
J
∑

j=1

Xj [i] + Z[i] (2)

whereX1[i], X2[i], . . . , XJ [i], Z[i], andY [i] are the channel
inputs, noise, and channel output at timei respectively. The
noiseZ is an i.i.d. Gaussian random variable with mean0 and
fixed variance.

Definition 3: An average power constraintis given by:

1

n

n
∑

i=1

(x[i])
2 ≤ P, (3)

whereP ∈ R+ andx[i] ∈ R is theith symbol in the codeword
As stated earlier, all channel inputs face identical transmit

power constraints. Also, when we say a label from the integers
is uniquewe mean from all previously assigned labels.

Definition 4: A Gaussian multiple-access network, GMAC,
consists of the following elements:

1) VN : the encoder/decoder nodes of the network. Each
node, v, has a unique label taken from the positive
integers,v ∈ Z+, and consists of a decoding function
gvjv for each incoming edge(vj , v) and an encoding
function fvvk

for each outgoing edge(v, vk).
2) vS : the source node. One element ofVN . The source

sees the message,W ∈ {1, 2, . . . , 2nR}.
3) (vR

1 , vR
2 , . . . , vR

L ): the receiver nodes. Each one is an
element ofVN .

4) VMAC: the MACs in the network. Each MAC,m, has a
unique integer label,m ∈ Z+. Each MAC has a noise
varianceNm ∈ R+.

5) ENN : the directed point-to-point channels in the net-
work. Each channel has a unique integer label,eNN ∈
Z+, and the labels of its inputs and output nodes
are given by the functionsvIN(eNN ) and vOUT(eNN )
respectively. The noise variance for the channel is given
by Ne ∈ R+.

6) ENM : the input edges from nodes to MACs. Each edge
has a unique integer label,eNM ∈ Z+, and the labels



of its inputting node and destination MAC are given by
the functionsvIN(eNM ) andvOUT(eNM ) respectively.

7) EMN : the output edges from a MAC to a node. We
assume that each MAC only has an input into one node.
Each edge has a unique integer label,eMN ∈ Z+, and
the label of its MAC and destination node are given by
the functionsvIN(eMN ) andvOUT(eNM ) respectively.

8) Xvjvk
[i]: the channel input on the edge(vj , vk) at time

i. The encoders are constrained to only produce channel
inputs from timei = 1 to time i = n. All encoders face
the same power constraint for each edge.

9) Yvjvk
[i]: the channel output on the edge(vj , vk) at time

i.
We also assume that there are a finite number of nodes and

channels in the network,|VN | + |VMAC| + |ENN | + |ENM | +
|EMN | < ∞.

Definition 5: A multicast rate,R, is achievableif ∀ǫ ∈
(0, 1) andn large enough there exist encoding and decoding
functions for the network such that the average probabilityof
error is less thanǫ:

Ŵℓ = fvR
ℓ
(Y n

vR
ℓ
)

Pr
(

{Ŵ1 6= W} ∪ · · · ∪ {ŴL 6= W}
)

< ǫ, (4)

whereW ∈ {1, 2, . . . , 2nR}.
Definition 6: Themulticast capacityis the supremum of all

achievable multicast rates.
Definition 7: A point-to-point AWGN network, GPOINT =

(VN , ENN ), is just a Gaussian multiple-access network with-
out any multiple-access nodes,VMAC = ENM = EMN = ∅.

Definition 8: A unit bit pipe network, GPIPE = (V , E), is just
a point-to-point AWGN network except all of the channels,
E , are taken to be noiseless bit pipes with unit capacity. The
encoding/decoding nodes are given by the setV .

Our scheme will give achievable rates for anyGMAC. We ex-
press the achievable rate through a new point-to-point AWGN
network that results from an appropriate transformation ofour
original network. The achievable rate is then given by the
multicast capacity of the point-to-point network. We will also
demonstrate that in some cases our achievable rates coincide
with the simple upper bound due to the max-flow min-cut
theorem of Ford and Fulkerson.

We now briefly review some results for multicasting over
point-to-point channel networks. In [1], it was shown that for
a unit bit pipe network the multicast capacity is given by the
max-flow min-cut theorem. For each receiver, calculate the
maximum information flow across all cuts that separate the
source node from that receiver. The multicast capacity is the
minimum of all these max-flow values taken over all cuts and
receivers. In [2] and [3], it was shown that linear encoding
and decoding over a finite field is sufficient to achieve the
multicast capacity. Bounds are also given on the required field
size. It was independently and concurrently shown by Ho et
al. in [17], Jaggi et al. in [5], and Sanders et al. [6] that the
field size only needs to be larger than the number of receivers.

We reproduce the version from [17] below as it will be useful
to us in proving our main theorems.

Definition 9: Let GPIPE = (V , E) and letFq be a finite field
of size q. An algebraic network codeis a set of linear func-
tions for a unit bit pipe network. Specifically, each encoding
function at a nodev is constrained to be a linear function of
its observations from each incoming edge:

Xv[i] =
∑

j

αvjYvj [i]. (5)

whereYvj [i] is the value seen by nodev at time i on its j th

incoming edge andYvj [i], αvj ∈ Fq for all v ∈ V .
Lemma 1 (Ho et al.):Let G = (V , E) be a unit bit pipe

network with a single source andL receivers. The multicast
capacity is given by the max-flow min-cut bound and can be
achieved by an algebraic network code over any finite field
larger thanL (Fq, q > L).

For a full proof, see [4]. In [18] it was shown that there
is a channel-network separation theorem for multicasting over
point-to-point channel networks. In fact, it is straightforward
to find an algebraic network code for a point-to-point channel
network. This is captured in the following lemma which will
be useful for the main theorem.

Lemma 2:Choose anyδ > 0. Given any point-to-point
channel network,GPOINT = (VN , ENN), with multicast capac-
ity C, employing capacity-achieving channel codes on each
link coupled with an appropriate algebraic network code can
achieve any multicast rateR = C − δ.

Proof: Let the capacity of each channelc ∈ ENN

be given byCc. Choose capacity-achieving codes for each
channel such that with high probability we get a noiseless
channel with rateĈc = Cc − δ

2|ENN | . Call the resulting

“noiseless” network,̂G. Now chooseλ > 0 such that:

max
c∈ENN

(

Ĉc − λ

⌊

Ĉc

λ

⌋)

<
δ

2|ENN | (6)

Create aλ bit pipe network,GPIPE = (V , E), where the nodes
are the same as inGPOINT, V = VN . For each channelc ∈ ENN

with capacityCc in GPOINT, place
⌊

Ĉc

λ

⌋

noise-free channels with
capacityΛ in the bit pipe network with the same connectivity.
Since all channels inGPIPE have the same capacity, we are
free to generate an algebraic code that achieves the multicast
capacity using Lemma 1. This algebraic code is sent over
the channels inGPOINT using the channel codes chosen above
and a timesharing approach. For instance, for a channel with
capacityCc, we consider then total channel uses in chunks
of
(⌊

Cc

λ

⌋)−1
n. Each of these chunks can be used to sendλn

bits reliably and thus can be used to send one function. Over
all cuts in the max-flow min-cut characterization, the largest
reduction in rate is at mostδ2 (due to the gap to capacity).
Considering the channels only in units ofλ also causes at
most a δ

2 rate reduction over the worst possible cut. Thus, we
can achieve the rateR = C − δ.

Since we are free to chooseδ in the proof above we
can approach capacity arbitrarily closely with the described
scheme.



III. M AIN RESULT

In this section, we state our main result and outline the
steps in the proof. The naive approach to a Gaussian multiple-
access network would be to first convert all channels, including
MACs, into bit pipes using standard i.i.d. random coding
arguments. Network coding could then be performed over the
resulting bit pipes. This ignores the potential of the MAC
to reliably compute as part of an overall network code. Our
strategy uses a lattice code to reliably compute linear functions
over the MACs in the network. This effectively converts the
MACs into linear processing units. We can also reduce the
network to a bit pipe network but in our case the MACs
become nodes. The key question is what rates should we
assign to the incoming and outgoing links to these nodes in
our reduction. We will call this thelinear processing rateand
we will demonstrate that it is at least:

RLP =
1

2
log

(

1

Jm

+
P

Nm

)

(7)

whereNm is the noise variance associated with that MAC and
Jm is the number of users.

We now give a formal statement of our result.
Theorem 1:Let GMAC be an arbitrary Gaussian multiple-

access network. We construct a new point-to-point AWGN
network, G′ = (V ′, E ′), by the following transformations.
First, let the set of encoder/decoder nodes,V ′, in the new
network be given by the original encoder/decoder nodes as
well as the original MACs,V ′ = VN ∪ VMAC. Second, let the
channels in the new network,E ′, be given by the original
point-to-point channels as well as the input and output edges
to the MACs,E ′ = ENN ∪ ENM ∪ EMN . The connectivity of
these edges is the same as in the original network. Finally, we
set the capacity of the edges taken fromENM andEMN to be

1

2
log

(

1

Jm

+
P

Nm

)

(8)

whereNm is the noise variance of the MACm associated to
these edges in the original network andJm is the number of
users. Any multicast rate achievable on the new network is
achievable on the original network. As usual, the maximum
achievable multicast rate on a point-to-point channel network
is given by the minimum of the min cuts across all receivers.

The proof will proceed in several steps. First, we will show
that it is sufficient to consider sending Gaussian sources over
the network at specified distortions and then connecting this
performance to a bit rate. Next, we will give an achievable
scheme for sending linear functions of Gaussian sources over a
Gaussian MAC. We will then show that an appropriate network
code over the reals exists for our network. Finally, we will
show that the desired distortions are achievable.

IV. A CHIEVABLE RATES FROMJOINT SOURCE-CHANNEL

SCHEMES

In this section, we will show that if we can build a joint
source-channel code for multicasting Gaussian sources with

distortion D over a Gaussian multiple-access network, then
we can also build a channel code for multicasting at rate less
thanR(D) over the same network. This proof trick does not
seem fundamental to the problem but it significantly simplifies
the analysis.

Lemma 3:Let GMAC be a Gaussian multiple-access chan-
nel network. Assume, for allk large enough andn =
kℓ, ℓ ∈ Z+ channel network uses, that the source node
can transmit an i.i.d. Gaussian sequence,s, of length-k
with mean 0 and varianceσ2

S such that the receivers can
make estimateŝs1, ŝ2, . . . , ŝL, each with mean-squared er-
ror (MSE) Dℓ. Then for anyǫ > 0, we can design en-
coders and decoders for the network for multicastingW ∈
{1, 2, . . . , 2NR} to the receivers such that they can make
estimatesŴ1, Ŵ2, . . . , ŴL such that the average probability
of error Pe = Pr

(

{Ŵ1 6= W} ∪ · · · ∪ {ŴL 6= W}
)

< ǫ so
long as

R <
1

2ℓ
log

(

σ2
S

Dℓ

)

(9)

Proof: Fix k andℓ. Choose the encoders and decoder in
the network such that we achieve the specified distortions at
the receivers. We have by the data processing inequality:

k

2
log

(

σ2
S

Dℓ

)

≤ I(Sk, ; Ŝk
ℓ ) (10)

≤ I(Xn, ; Y n
ℓ ). (11)

Thus we know that there exists a multiletter input distri-
bution, p(xn), such that the mutual information to each
receiver is lower bounded by the rate-distortion func-
tion. We now define supersymbols of lengthn, X̃[i] =
[X [(i − 1) ∗ n + 1]X [(i − 1) ∗ n + 2] · · ·X [in]] and Ỹℓ[i] =
[Yℓ[(i − 1) ∗ n + 1]Yℓ[(i − 1) ∗ n + 2] · · ·Yℓ[in]]. The super-
symbolsX̃ and Ỹ take values in the alphabets̃X = R

n and
Ỹ = R

n respectively.
Keep all encoders and decoders in the network to be the

same as in the distortion-achieving case except for those at
the source and the receivers,vS , vR

1 , . . . , vR
L . Thus, p(ỹℓ|x̃)

is a memoryless channel. Generate a random codebook
with 2NR length N codewords (one for each message in
{1, 2, . . . , 2NR}) with each symbol drawn i.i.d. fromX̃ for
some N ∈ Z+ and R > 0. The ℓth receiver upon seeing
Ỹ N

ℓ uses a maximum likelihood rule to infer the original
messageW . Denote this estimate bŷWℓ. It follows from
[19] that for such a channel andN large enough, the average
probability of error over codebooks and messages for receiver
ℓ, P̄r(Ŵℓ 6= W ) can be made less thanǫ

L
if R < I(X̃; Ỹ ).

It follows from the union bound that the probability that any
receiver is in error averaged over all codebooks and messages
satisfies:

P̄e ≤
L
∑

ℓ=1

P̄r(Ŵℓ 6= W ) < ǫ. (12)

Finally, we get that there exists at least one fixed codebook
with average probability of error,Pe at mostP̄e, otherwise the



average over all codebooks would not hold. This completes the
proof.

V. COMPUTATION WITH LATTICES

We now state some results on lattices that will be useful
in constructing our network code. The essential fact is that
there exists lattices which are simultaneously good for both
AWGN channel coding and Gaussian source coding. We will
also show how to constructcomputation codesfrom these
lattices to compute sums reliably over a Gaussian MAC.

Definition 10: An n-dimensional lattice, Λ, is a set of
points in R

n such that ifx,y ∈ Λ, then x + y ∈ Λ, and
if x ∈ Λ, then−x ∈ Λ. A lattice can always be written in
terms of a generator matrixG ∈ R

n×n:

Λ = {x = zG : z ∈ Z
n} (13)

whereZ represents the integers.
Definition 11: An (n, R) lattice code, C, is a code with

elements taken from the intersection of somen-dimensional
lattice Λ, shifted byρC ∈ R

n, and a convexn-dimensional
shapeT (which is usually chosen to meet some type of power
constraint.)

C = {Λ + ρC} ∩ T (14)

|C| = 2nR (15)
Definition 12: A lattice quantizeris a map,Q : R

n → Λ,
that sends a point,x, to the nearest lattice point in Euclidean
distance after shifting it by some constant,ρS ∈ R

n:

xq = Q(x + ρS) = argmin
l∈Λ

||x + ρS − l||2 (16)

Definition 13: Let [x] mod Λ = x − Q(x). For all x,y ∈
R

n, the modΛ operation satisfies:

[[x mod Λ] + y] mod Λ = [x + y] mod Λ. (17)
As lattices have infinite extent (and thus violate the power

constraint), much effort was focused on finding lattices that
when intersected with an n-dimensional ball of radius

√
nP

centered at0 form a good code. Urbanke and Rimoldi showed
that such lattices indeed exist in [20]. Further work by Erez
and Zamir has focused on proving that decoding to the
closest lattice point also achieves capacity [21]. Erez, Litsyn
and Zamir showed in [22] that there exist lattices that are
simultaneously good source codes and good channel codes.
These will be extremely useful in our distributed refinement
scheme.

We now consider the problem of transmitting the sum of
Gaussian sources over a Gaussian MAC at the minimal mean-
squared error. This will be the key to using Gaussian MACs
to compute linear functions. Below we give an achievable
scheme, computation coding, for refining the sum over many
channel uses. This result originally appeared in [9].

Each encoder,Ej , sees an independent identically distributed
(i.i.d.) Gaussian sequence{Sj[i]}k

i=1 with mean0 and variance
σ2

S . The encoders each face one terminal of a Gaussian MAC
with equal transmit powerP and noise varianceN as in
Definition 2. For everyk source symbols, we are allotted
n = ℓk channel uses whereℓ ∈ Z+. Our goal is to reconstruct

the sum of the sources,U = S1+S2+ · · ·+SJ , at the decoder
with the lowest possible distortion. Distortion is measured by
the usual mean-squared error criterion:

Dℓ =
1

k

k
∑

i=1

E[(Ui − Ûi)
2] (18)

Theorem 2:The following distortion is achievable1 for
sendingk sums of i.i.d. Gaussian sources over a Gaussian
MAC with n = ℓk, ℓ ∈ Z+ channel uses:

Dℓ = Jσ2
S

(

N

N + JP

)(

JN

N + JP

)ℓ − 1
. (19)

Proof: We provide a brief description of the scheme
here but refer the interested reader to [9] for a full proof. In
[24], Kochman and Zamir develop an elegant joint source-
channel lattice scheme for sending a Wyner-Ziv Gaussian
source over a dirty paper channel. Our distributed refinement
scheme consists of two main steps. First, we use uncoded
transmission to send a noisy sum to the decoder. Then, we have
each encoder run a version of the Kochman-Zamir scheme
targeted at the desired sum,U . Unfortunately, there is a penalty
for this form of distributedness. The lattice at each encoder
results in channel outputs that violate the power constraint by
a factor ofJ . Therefore, we must scale down our inputs to
meet the power constraint and accept the resulting increasein
distortion at the decoder.

Assumeℓ = 2. We thus have2k channel uses to convey
k sums. We will use the firstk channel uses for an uncoded
transmission phase. The decoder will then form an MMSE
estimateÛ of the sumU = S1 + · · · + SJ and use this as
side information for the next phase. Thus,U = Q + Û where
Q is an i.i.d. Gaussian sequence with mean0 and variance
Jσ2

S
N

N+JP
.

Choose a sequence of good lattices,Λk, using [22] and
scale them such that the normalized second moment of the
lattice isJP . Letd1,d2, . . . ,dJ be independent dither vectors
drawn uniformly over the fundamental Voronoi region,dj ∼
Unif(V0,k), and made available to the encoders and decoder.

Each encoder transmits1√
J
xj where:

xj = [γsj + dj ] mod Λk. (20)

The channel output is given by:

y =
1√
J

J
∑

j=1

xj + z.

The decoder then computes:

ˆ̂u = β



αy −





J
∑

j=1

dj + γû







 mod Λk + û

We define the following constants:α = JP
√

J
JP+N

, γ0 =
√

JP
σ2

Q

(

1 − JN
JP+N

)

and letγ → γ0 from below ask → ∞.

1In [23], we claimed a slightly lower distortion as achievable. We thank
the authors of [15] for pointing out an error in our distortion calculation.



We also set:β =
σ2

Qγ

JP
. As k → ∞, we get that the achieved

distortion isD = Jσ2
S

N
N+JP

JN
N+JP

. For all higher values of
ℓ, the scheme can be repeated with the final estimate from the
last refinement taken as side information for the next stage.

VI. AWGN N ETWORK CODING

Before we give a full proof of Theorem 1, we will need two
auxiliary results. First, we show that given a full rank system
of equations over a prime-sized finite field, the same system
of linear equations over the reals is also full rank.

Lemma 4:Let F be a field of sizeq whereq is prime. Let
A ∈ F

m×m be a full rank matrix with elementsaij . Finally,
let Ã be a matrix inR

m×m whose elements,̃aij , are the same
as those ofA, ãij = aij . Then,Ã is also full rank.

Proof: A matrix is full rank if its determinant is non-zero.
One way to express the determinant is through the Leibniz
formula. For a matrix overF, this is

det(A) =

(

∑

σ∈Sm

sgn(σ)

m
∏

i=1

aiσ(i)

)

mod q (21)

where Sm is the set of all permutations of{1, 2, . . . , m},
sgn(σ) is sign of a permutation, and the sum and product
are over the reals but are mapped back intoF by the modulo
operation. Recall that the sign of a permutation is the1 if it
takes an even number of switches to get from{1, 2, . . . , m}
to the permutationσ and−1 otherwise. The determinant of
the same matrix over the reals is

det(Ã) =
∑

σ∈Sm

sgn(σ)
m
∏

i=1

aiσ(i). (22)

Clearly, det(A) 6= 0 implies that det(Ã) 6= 0 since
b mod q 6= 0 is a stronger requirement thanb 6= 0.

Finally, we need to show that givenJ Gaussian sources at
each terminal of a MAC, we can refine a linear function of
these sources at the same rate that is available for refining a
sum ofJ i.i.d. Gaussian sources.

Lemma 5:Let S1, S2, . . . , SJ be Gaussian sources with
variancesσ2

1 , σ
2
2 , . . . , σ2

J respectively. Letσ2
MAX = maxj σ2

j .
Each source is seen at one encoder with powerP which faces
a Gaussian MAC with noise varianceN . Let q be a positive
prime number and letU = β1S1 + β2S2 + · · ·+ βJSJ where
βj ∈ {0, 1, 2, . . . , q − 1}. Then givenk vectors of source
symbols andn channel uses wheren = kℓ, the decoder can
make an estimate ofU at distortion

Dℓ = J(q − 1)2σ2
MAX

(

JN

N + P

)ℓ

. (23)

Proof: The bulk of the work is done by Theorem 2.
To send a linear function, we choose a lattice,Λ, for use
in refining a sum with Theorem 2 as if all the sources
had variance(q − 1)2σ2

MAX . At each terminal, we quantize
Tj = βjSj + Wj onto the latticeΛ where Wj is an i.i.d.
Gaussian random variable available as common randomness
to both the encoder and the decoder. Its variance is chosen
such that the variance ofTj is matched to the design variance

of Λ, σ2
Wj

= (q − 1)2σ2
MAX − β2

j σ2
j . This lattice point is

transmitted and the decoder makes an estimate of the sum
T1 + T2 + · · · + TJ and removes the common randomness
variables,Wj , j = 1, 2, . . . , J , to get an estimate ofU at
the desired distortion. Note that as this works in expectation
over theWj , there exist fixed constantsw1, w2, . . . , wJ that
can serve the same role.

Remark 3:Note that the
(

N
N+JP

)

term does not appear
in the distortion claimed above. This is because we are not
assuming the sources are i.i.d. so we do not make use of the
uncoded transmission phase. Due to the dither random vari-
ables, independence is unnecessary for the sources. Further,
note that as the dithers work in expectation, there exist fixed
constants that can serve the same purpose.

We are now ready to prove our main theorem. The proof will
proceed in several steps. First, we reduce our original network
to a point-to-point channel network. We will then find a set of
channel codes and an algebraic network code using Lemma
2 to achieve the multicast capacity of this virtual network.
Finally, we will show how to map this overall code onto the
original network, especially the MACs.

Proof: [Theorem 1] Chooseq to be a prime number such
thatq > L whereL is the number of receivers. We will use the
channel networkn = kmℓ times to convey Gaussian sources
of lengthk. We will then connect the distortion performance
back to sending bits using Lemma 3. Construct a new point-to-
point channel network usingG′ = (V ′, E ′) as in the statement
of the theorem. LetC′ be the multicast capacity of theG′

which is given by the usual max-flow min-cut characterization.
We would like to show that for anyδ, ǫ > 0, we can achieve
a multicast rateR = C′ − δ on the original network with
average probability of error not exceedingǫ.

First, using Lemma 2, find an algebraic network code forG′

that achieves rateR = C− δ
2 . Recall that this involves creating

yet another virtual network,GPIPE, this time one consisting only
of λ rate pipes for some appropriately chosenλ. Each of
theseλ rate bit pipes is designated to carry exactly one linear
function. To see how these functions map to both the new
point-to-point network and the original network, recall that we
can just look at each channel in terms of chunks of channel
uses. For instance, for a channele ∈ E ′ with capacityCe, we
useℓ

⌊

Ce

λ

⌋

chunks of length
(⌊

Ce

λ

⌋)−1
mk. We assume that

the blocklengths are large enough so that any loss in chunk
assignment due to rounding error is negligible.

Let Pλ, Nλ > 0 be chosen such thatλ = 1
2 log

(

1 + Pλ

Nλ

)

.
For eachℓ chunks of channel uses, each node must send out
exactly one function of its inputs. The number of inputs is
clearly upper bounded by the number of edges in the virtual
bit pipe network which itself is upper bounded by:

|EUPPER| =

(

max
e∈E′

⌊

Ce

λ

⌋)

|E ′| (24)

which is a constant that does not depend onn.
Each node is thus sent a finite number of functions,

Uk
1 , Uk

2 , . . . , Uk
J . Assume that each of these have variance at

most σ2
U . It makes MMSE estimates of these and prepares



a new function,V = β1U1 + β2U2 + · · · + βJUJ with
βj ∈ {0, 1, . . . , q − 1} for each outgoing chunk of channel
uses according to the algebraic network code. This function
can be transmitted to the receiver with distortion at worst:

Dℓ = |EUPPER|(q − 1)2σ2
U

(

Nλ

Nλ + Pλ

)ℓ

. (25)

according to Lemma 5. Note that this holds whether the node
in the new network is an actual node in the original network or
a MAC. Thus, the processing at a node increases the distortion
by at most a factor|EUPPER|(q − 1)2.

Compute the multicast capacity,CPIPE of GPIPE. Let γ =
CPIPE

λ
and note thatγ is an integer due to the construc-

tion of GPIPE.At the source we will createγ i.i.d. Gaussian
sourcesSk

1 , Sk
2 , . . . , Sk

γ of length k and variance1. These
will be relayed to the receivers by means of the algebraic
network code and the coding method described above. The
receiver will see functions of these original sources at some
distortions. First note that the distortions will not exceed
(|VN | + |VMAC|)|EUPPER|(q − 1)2. This is just the number of
processing nodes multiplied by the maximum increase factor
due to processing at one node.

The functions of the sources seen at the decoders can
be written as a matrix transformation just as the original
algebraic network code description. If the algebraic network
code induces a transformA over F on the sources to a given
receiver then the transform for Gaussian case is given byÃ

which has the same entries asA but operations are over the
reals. Since we assumeA is full rank thenÃ is full rank as
well by Lemma 4. Thus, we can solve for each original source
at every receiver at distortion

Dℓ = α

(

Nλ

Nλ + Pλ

)ℓ

(26)

α = γ2(|VN | + |VMAC|)|EUPPER|(q − 1)2. (27)

Finally, we invoke Lemma 3 to get a multicast rate from
these distortions. We get that we can achieve any multicast
rate satisfying:

R <
γ

2ℓ
log

(

α

(

Nλ + Pλ

Nλ

)ℓ
)

(28)

=
γ

2
log

(

1 +
Pλ

Nλ

)

− γ

2ℓ
log α (29)

= γλ − γ

2ℓ
log α (30)

= CPIPE −
γ

2ℓ
log α (31)

Chooseℓ large enough such that we can achieveR = CPIPE− δ
2 .

Recall that by constructionCPIPE > C − δ
2 . Thus, we can

achieve a rateR = C − δ as desired. By making all
the appropriate blocklengths large enough, we can make the
probability of error arbitrarily small. This completes theproof.

Although the proof is somewhat involved, the key fact
is that we can refine functions at a certain rate over a

MAC. This allows us to eliminate the penalty incurred by
increasing function variances over many refinements. We now
show that if the noise variance of every channel is the same
and no receiver directly views the output of a MAC, then
the achievable scheme coincides with the max-flow min-cut
bound.

We can generalize the statement of our main theorem to
include MACs with unequal power per user. Essentially, we
can use a rate splitting approach to create several compu-
tational units from the original MAC, each with a different
connectivity. For instance, take the minimum input power over
all users. We can then take that much power from each user
to create a processing node with output rate corresponding
to that power. The codewords generated from this can be
treated as noise for the next stage which repeats this process
with one user removed and all powers suitably reduced. This
gives a new type of multiple-access region between different
computations at different SNRs.

A closer examination of the proof shows that the main
fact is the rate at which the linear function is refined over
the Gaussian MAC. This is well-represented by the linear
processing rate which is defined below.

Definition 14: The linear processing rate, RLP , for a Gaus-
sian MAC is given by:

RLP = lim
ℓ→∞

1

2ℓ
log

(

σ2
S

Dℓ

)

(32)

whereDℓ is the distortion of a linear function of Gaussian
sources at the receiver afterℓ refinements.
This rate is directly connected to the rate at which we can
“compute-and-forward” messages. Thus, improving the rate
at which a sum of Gaussian sources can be refined with an
increasing number of channel uses on a Gaussian MAC will
result in a higher achievable multicast rate for an AWGN
network.

Overall, we have shown that with the appropriate tools
we can exploit the additive function of a Gaussian MAC to
compute functions as part of a network code. This approach
can be superior to a separation-based approach which decodes
all incoming messages rather than just a function of them.

VII. BUTTERFLY

Consider the AWGN channel network in Figure 1 (a). Each
vertex on the graph represents a decoder/encoder pair. The
sender is at the top of the graph and the two receivers are
at the bottom. All encoders must satisfy an average power
constraint,1

n

∑n
i=1 xj [i]

2 ≤ P . The Zm, m = 1, 2, . . . , 7 are
drawn i.i.d. according to a Gaussian distribution with mean0
and varianceN . This is just the butterfly network considered
in [1] except that we have placed a Gaussian MAC in the
center.

Lemma 6:The following multicast rate is achievable for the
channel network in Figure 1(a) is:

RLAT =
1

2
log

(

1 +
P

N

)

+ max

(

0,
1

2
log

(

1

2
+

P

N

))

(33)



The proof is just an application of Theorem 1. The achiev-
able rate for a separation-based scheme is given by:

RDF =
1

2
log

(

1 +
P

N

)

+
1

4
log

(

1 +
2P

N

)

(34)

The lattice-based strategy takes a performance hit “insidethe
log” and the separation-based scheme takes the hit on the “pre-
log”. It is clear from the figure below that when the per user
SNR is larger than1.5, the lattice-based scheme is preferable.
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Fig. 2. Multicast Rates for the AWGN Butterfly Network

VIII. D ISCUSSION ANDOPEN PROBLEMS

In this paper, we have found a new characterization of
the achievable multicast rate for any Gaussian multiple-access
network. These achievable rates are (at least in some cases)
higher than those achievable with channel-network separation.
Our primary tool was a lattice computation code that allowed
us to reliably refine a linear function of Gaussian sources over
a Gaussian MAC. Without this coding technique, we would
be stuck with the noise buildup from uncoded transmission
or a rate penalty associated with the variance inflation as we
take sums over the reals. Furthermore, it can be argued that
the performance of this computation code is dependent on the
structure of the underlying lattice code. Basically, a standard
random coding argument cannot be used to construct codes
to efficiently compute over MACs as decoding the function
requires decoding the individual sources first. The structure of
the lattice allows us to sum codewords and decode only the
sum of the sources.

It also seems clear that in more general large AWGN
networks, structured codes will be required to determine the
capacity region. In future work, we will address the multicast
capacity of AWGN networks with both broadcast and multiple-
access constraints. Beyond network coding, it seems that the
lattice techniques developed here could be useful for casting
an arbitrary AWGN network into a set of “noisefree” linear
equations between the senders and the receivers. The rank of

the equations seen at each receiver could then determine the
rate transmitted to it.
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