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Abstract—We study the multicasting problem for additive w
white Gaussian noise (AWGN) networks with both point-to-pant Zﬁ/KZf
and multiple-access links. The recent discovery of networkoding
has shown that routing is suboptimal for networks of point-to-
point channels: messages must be mixed at intermediate nasle Z3
We showed in earlier work that if a network includes multiple- '
access channels (MACs) then converting these channels inibdt
pipes with a channel-network separation-based approach ialso 24> ®<Zs5 Ry [R5 R4
suboptimal: the MACs should be used to compute functions %%27

reliably as part of an overall network code. In this paper, we é\
give a lattice-based coding strategy for reliably computig linear /@
functions over Gaussian MACs. We then give a computable ) ) Y 3 3 3
statement of rates achieved by the resulting network code.nl Wi (@ W Wi (b)) W2 Wi () W
many interesting cases, our achieved rates are higher tharmnbse

accessible to a separation-based scheme. Our results showat Fig. 1. (a) Example of a Gaussian Multiple-Access NetwolR. Ysing a
structured codes can be used to derive achievable rates forutti-  lattice-based code, we can achieve any rate on the origiemlonk that is
user communication problems that have been outside the rehc reachable on this network. Her&5™ = 1 log (% + N% where P is the
of standard i.i.d. random coding arguments. per user power of the MAC. (c) With a standard random codirqument,
we can only achieve rates on this network wh&%" = %log (1 + %)

I. INTRODUCTION

The celebrated paper of Ahlswede et al. showed that routing
is insufficient to achieve the multicast capacity of poimt-t . ) )
point channel networks [1]. Instead, some intermediateesod?® reliably computed at a much higher rate using a structured
in the network should only send out a function of theifandom code. In many cases of interest, the rate increase is
incoming messages. The receivers, given an appropriate RigPortional to the number of users. Triguctural gainis
of functions can successfully decode the original messag@ite different fromcollaborative gainwhere the transmitters
This strategy is referred to astwork codingand much work Use message dependencies to access more favorable channel
construction (see, for instance, [2]-[6]). ideal as they are extremely well suited for reliably comipgti

If the channel network includes multi-user channels as wéifiéar functions. In this paper, we show how to efficiently
as point-to-point links, it is intuitively clear that netvko exploit Gaussian MACs as part of an overall network code.
coding will be part of the overall solution. It has also been To take advantage of the structure of Gaussian MACs, we
shown that separating channel and network coding is riotroduce a new strateggompute-and-forwardNodes in the
always possible. For instance, for deterministic broaiicas network that observe the output of a MAC will effectively gnl
works, Ratnakar and Kramer showed that only joint channélecode a linear function of the messages. This allows us to
network coding is optimal [7]. In earlier work, we showedxamine a reduced network where the MACs are replaced with
that if the channel network includes finite field multiplenodes with the same connectivity. The capacities of thegs li
access channels (MACs), these channels should ideally Vidd be given by thelinear processing ratef the MAC. As we
used to compute reliable functions of their messages ratiél see, any multicast rate achievable on the reduced point
than be reduced to bit pipes via channel-network separatignpoint network will be achievable on the original MAC.

[8], [9]. The key insight is that functions well-matched teet ~ Other authors have independently considered using the
structureof the probability transition matrix of the MAC can additive structure of wireless MACs for network coding “on
. . _ _ the air.” Bhadra, Gupta, and Shakkottai use channel fadidg a
This work was supported by the National Science Foundatiodeu
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well a Graduate Research Fellowship. a fading finite-field MAC network as the field size grows [10].



Zhang, Liew, and Lam take a communications perspectitltte same SNR. This limitation can be removed for a more

and use uncoded transmission to send Ra@dims of bits at general statement of our main theorem and we provide a brief

lower bit error rates than possible with separate transamiss sketch of the argument in Section VII. Similarly, we can also

[11]. Katti, Gollakota and Katabi simulate a practical gyst characterize cyclic networks but this is also beyond thepsco

that uses a clever scheme to add bits using the phases trafishis paper.

mitted signals [12]. However, from an information theazeti Definition 1: A point-to-point AWGN channés$ given by:

perspective, uncoded transmission cannot be effective ave , . .

large network. The error from these uncoded transmissians ¢ Y{i) = X[i] + 2[i) (1)

quickly build up over several hops and will drive the resugti where X[i], Z[i], andY[;] are the channel input, noise, and

rate to zero as the noise will become part of the signal vedannel output at time respectively. The nois¢ is an i.i.d.

are attempting to relay to the receivers. In order to avo@aussian random variable with me@rand fixed variance.

propagating noise, we need to reliably decode the functionsRemark 2:We could replace the point-to-point AWGN

at every node. channels in the network with any memoryless channels with
Structured codes are essential for efficiently reliably eonthe same capacities and our main result would remain the

puting functions over MACs. The underlying idea followsame. However, it is convenient to work in terms of Gaussian

from a classic result of Kérner and Marton [13]. In theichannels.

consideration, a central decoder wants to reconstructdhityp  Definition 2: A Gaussian multiple-access chanriglgiven

of two correlated sources seen by separate encoders. By usin:

the same linear codebook at each encoder, the decoder can

recover the parity from the sum of the received codewords. Y] = ZXJ' [i] + Z[i] 2)

Their work was (to the best of our knowledge) the first =

situation where structured codes were needed to complete tmereXl (i, Xalil, ... X,[il, Z[i], and¥]i] are the channel

achievabili roof. In earlier work, we showed that lineal’ . . .
v P ts, noise, and channel output at timeespectively. The

codes can be used as part of a compute-and-forward strategy i i d G : d iable with d
for achieving the multicast capacity of a noisy finite field. S€271S an 1.1.d. Laussian random variable with m

multiple-access network [9]. In this paper, we use lattiaes xed \_/a_r!ance.. L ]

a building block for our overall code showing that structure Definition 3: An average power consrairis given by:

codes are useful for solving AWGN network problems as well. 1 <& 9

A similar conclusion was reached in [14] where lattices are n Z ([i])” < P, ®)

used to achieve rates inaccessible to standard i.i.d. mndo =1

codes for a MAC with interference known at the transmitterwhereP € R, andz[i] € R is the:" symbol in the codeword

In [15], the authors use lattice codes to increase rates for &As stated earlier, all channel inputs face identical trabsm

two-way relay AWGN problem. In [16], lattices are used t@power constraints. Also, when we say a label from the integer

improve the sum rate for the distributed compression of tfiguniquewe mean from all previously assigned labels.

difference of correlated Gaussians. Definition 4: A Gaussian multiple-access netwpré,,c,
The paper is organized as follows. In Section II, we give @nsists of the following elements:

formal problem statement. In Section Ill, we state our main 1) Vy: the encoder/decoder nodes of the network. Each

result and outline the proof. In Section IV, we show how to node, v, has a unique label taken from the positive

connect the multicast problem to a source-channel problem integers,v € Z,, and consists of a decoding function

which is easier to analyze. In Section V, we give definitons  g,,, for each incoming edgév;,v) and an encoding

and outline useful results from lattice channel and source function f,,, for each outgoing edgév, vy).

coding theory. In Section VI, we give our lattice-based ctute ~ 2) v°: the source node. One element ¥f;. The source

Gaussian-multiple access networks. In Section VI, we laok sees the messag®/ € {1,2,...,2"F}.
AWGN butterfly network as an example. Finally, in Section 3) (vf,vft ... vE): the receiver nodes. Each one is an
VIII we discuss open problems and future directions. element ofVy.

4) Viac: the MACs in the network. Each MAGn, has a
unique integer labekn € Z,. Each MAC has a noise
We now give a formal problem statement for multicasting varianceN,, € R,.
information over Gaussian multiple-access networks. Both  5) £y n: the directed point-to-point channels in the net-
point-to-point and the multiple-access channels in thevodt work. Each channel has a unique integer labgly €
are AWGN channels. To simplify the statement of our results, Z,, and the labels of its inputs and output nodes
we assume that all transmitters face the same power cantstrai are given by the functionsy(enxn) and vour(enn)
and that the network is acyclic. The signal-to-noise réBNR) respectively. The noise variance for the channel is given
for each channel will be set by adjusting the noise variances by N, € R,.
Remark 1:Note that setting all the power constraints to 6) Exas: the input edges from nodes to MACs. Each edge
be equal enforces that for a given MAC, each user has has a unique integer labely), € Z,, and the labels

Il. PROBLEM STATEMENT



of its inputting node and destination MAC are given byVe reproduce the version from [17] below as it will be useful
the functionsvy (enar) andwour(enar) respectively. to us in proving our main theorems.

7) Eun: the output edges from a MAC to a node. We Definition 9: Let Gype = (V, €) and letF, be a finite field
assume that each MAC only has an input into one nodgf. size . An algebraic network codés a set of linear func-
Each edge has a unique integer lakgly € Z,, and tions for a unit bit pipe network. Specifically, each encadin
the label of its MAC and destination node are given bfunction at a node is constrained to be a linear function of

the functionsvy (easn) anduvour(enas) respectively. its observations from each incoming edge:
8) X,..,[i]: the channel input on the eddge;, v) at time ; .
N . ’ X,[i] = vi Yosi]- 5
i. 'Izhe encoders are constrained to only produce channel ] 27: ;Yo ] ©®)

inputs from time; = 1 to time i = n. All encoders face

the same power constraint for each edge. , i :
9) Y,.., [i]: the channel output on the edge;, v;,) at time  'McOMINg edge and’;[i], a,; € F, forallvey.
Y Lemma 1 (Ho et al.)Let G = (V,&) be a unit bit pipe

2.
- network with a single source anfl receivers. The multicast
We also assume that there are a finite number of nodes ané 9

. capacity is given by the max-flow min-cut bound and can be
T;jgrrelso? the networkyv| + Muc| + |Enn| + [Enml+ 2 Hieved by an algebraic network code over any finite field

Definition 5: A multicast rate,R, is achievableif Ve larger thanl. (Fy, ¢ > I).

0.1 dn | h th ist di d decodi For a full proof, see [4]. In [18] it was shown that there
(0, ). andn large enough there exist encoding and decoting, -nannel-network separation theorem for multicastivey o
functions for the network such that the average probalulity

is | tham: point-to-point channel networks. In fact, it is straighti@ard
error s fess tham. to find an algebraic network code for a point-to-point chdnne

whereY,,;[¢] is the value seen by nodeat time+ on its j"

i n network. This is captured in the following lemma which will
We= f”/? (Y”f) be useful for the main theorem.
pr({Wl £W}HU---U {WL £ W}) <, (4) Lemma 2:Choose anyd > 0. Given any point-to-point
channel networkGeonr = (Viv, Enn), With multicast capac-
whereW € {1,2,...,2"}, ity C', employing capacity-achieving channel codes on each
Definition 6: The multicast capacitys the supremum of all link coupled with an appropriate algebraic network code can
achievable multicast rates. achieve any multicast rat = C' — 0.
Definition 7: A point-to-point ANGN networkGeonr = Proof: Let the capacity of each channel € Enn

(Vw, Enn), is just a Gaussian multiple-access network wit2€ given by Ce. Choose capacity-achieving codes for each
out any multiple-access node8ue — Exar = Exn = 0. channel such that with high probability we get a noiseless

Definition 8: A unit bit pipe networkGeee = (V, £), is just channel with rateCcA = Ce — m Call the resulting
a point-to-point AWGN network except all of the channelsnoiseless” networkg. Now choose\ > 0 such that:
&, are taken to be noiseless bit pipes with unit capacity. The R C. 5
encoding/decoding nodes are given by thelset Jmax | Ce— A < el

Our scheme will give achievable rates for afy.. We ex-
press the achievable rate through a new point-to-point AWGN€ate a\ bit pipe network,Gepe = (V, €), Where the nodes
network that results from an appropriate transformatioawf are the same as onr, V = V. For each channel € Eny
original network. The achievable rate is then given by th&ith capacityC. in Geonr, place CAJ noise-free channels with
multicast capacity of the point-to-point network. We wilsa capacityA in the bit pipe network with the same connectivity.
demonstrate that in some cases our achievable rates ain&ihce all channels G, have the same capacity, we are
with the simple upper bound due to the max-flow min-cutee to generate an algebraic code that achieves the ntltica
theorem of Ford and Fulkerson. capacity using Lemma 1. This algebraic code is sent over

We now briefly review some results for multicasting ovethe channels G, using the channel codes chosen above
point-to-point channel networks. In [1], it was shown that f and a timesharing approach. For instance, for a channel with
a unit bit pipe network the multicast capacity is given by theapacityC., we consider the: total channel uses in chunks
max-flow min-cut theorem. For each receiver, calculate thof (L%J)fl n. Each of these chunks can be used to send
maximum information flow across all cuts that separate tluits reliably and thus can be used to send one function. Over
source node from that receiver. The multicast capacity és thll cuts in the max-flow min-cut characterization, the |atge
minimum of all these max-flow values taken over all cuts angduction in rate is at mo% (due to the gap to capacity).
receivers. In [2] and [3], it was shown that linear encodinGonsidering the channels only in units afalso causes at
and decoding over a finite field is sufficient to achieve th@ost a% rate reduction over the worst possible cut. Thus, we
multicast capacity. Bounds are also given on the requirédl fican achieve the rat® = C — 4. ]
size. It was independently and concurrently shown by Ho etSince we are free to choose in the proof above we
al. in [17], Jaggi et al. in [5], and Sanders et al. [6] that thean approach capacity arbitrarily closely with the desatib
field size only needs to be larger than the number of receivessheme.

A
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[1l. M AIN RESULT distortion D over a Gaussian multiple-access network, then
In this section. we state our main result and outline tH&€ can also build a channel code for multicasting at rate less

steps in the proof. The naive approach to a Gaussian multipia@n (D) over the same network. This proof trick does not
access network would be to first convert all channels, irintpd S€€M fundamental to the problem but it significantly simgsifi
MAGCs, into bit pipes using standard i.i.d. random codin}'€ analysis. _ _

arguments. Network coding could then be performed over the-8mma 3:Let Gy, be a Gaussian multiple-access chan-
resulting bit pipes. This ignores the potential of the MAC€! network. Assume, for alk large enough andv =

to reliably compute as part of an overall network code. Odif> ¢ € Z+ channel network uses, that the source node
strategy uses a lattice code to reliably compute lineartions €20 transmit an iid. Gaussian sequeneg,of length#
over the MACs in the network. This effectively converts th¥/ith mean0 and varianceos such that the receivers can
MACs into linear processing units. We can also reduce tffgake estimates,,3,,...,8., each with mean-squared er-
network to a bit pipe network but in our case the MACSO! (MSE) D,. Then for anye > 0, we can design en-
become nodes. The key question is what rates should @Rflers and decoders for the network for multicastifig <

assign to the incoming and outgoing links to these nodes fih 2:- -.,2""} to the receivers such that they can make
our reduction. We will call this théinear processing ratand €StimatesiVy, W, ..., Wy, such that the average probability
we will demonstrate that it is at least: of error P, = Pr{{Wy # W}u.. - U{WL # W}) < €S0
long as
1 1 P 2
Rpp = log (ﬁ + N_m> ) R< %Mg %i ©)

whereN,, is the noise variance associated with that MAC and  Proof: Fix k and/. Choose the encoders and decoder in
J,,, is the number of users. the network such that we achieve the specified distortions at

We now give a formal statement of our result. the receivers. We have by the data processing inequality:

Theorem 1:Let G, be an arbitrary Gaussian multiple- k o2 . A
access network. We construct a new point-to-point AWGN 5 log (E) < I(S%,;57) (10)
network, G’ = (V',€&’), by the following transformations.

First, let the set of encoder/decoder nodgs, in the new < I(X"; YY) (11)

network be given by the original encoder/decoder nodes ffus we know that there exists a multiletter input distri-
well as the original MACS)” = Viy U Vi Second, let the pytion, p(z"), such that the mutual information to each
channels in the new network’, be given by the original receiver is lower bounded by the rate-distortion func-
point-to-point channels as well as the input and output 8dggsn, We now define supersymbols of length X|[i] =

to the MACs,&" = Exn U Enn U Enn . The connectivity of [x[(; — 1) s« n + 1] X[(i — 1) xn + 2] -- - X[in]] and Y;[i] =
these edges is the same as in the original network. Finadly, W, [(; — 1)« n + 1]Y;[(i — 1)  n + 2] -- - Yy[in]]. The super-
set the capacity of the edges taken fréu, and€xnv 10 be  symbols X and Y take values in the alphabefé = R™ and

1 1 P Y = R" respectively.
510g <— —> (8) Keep all encoders and decoders in the network to be the

J, N,
) ] ) " " ) same as in the distortion-achieving case except for those at
where Ny, is the noise variance of the MAG: associated t0 {he source and the receiversy, vF, ... vF. Thus, p(ii|#)

these edges in the original network aitgl is the number of s 53 memoryless channel. Generate a random codebook

users. Any multicast rate achievable on the new network jgin oNE length N codewords (one for each message in
achievable on the original network. As usual, the maximqul 2,...,2NVR1) with each symbol drawn i.i.d. fromd for

achievable multicast rate on a point-to-point channel Detw gome N ¢ Z. and R > 0. The £" receiver upon seeing
is given by the minimum of the min cuts across all receivery.ézv uses a maximum likelihood rule to infer the original

The proof will proceed in several steps. First, we will Sho%essageW. Denote this estimate by¥;. It follows from
that it is sufficient to consider sending Gaussian sources 0Y19] that for such a channel anl large enough, the average
the network at specified distortions and then connecting thqpapility of error over codebooks and messages for receiv
performance to a bit rate. Next, we will give an achievablg Pr(W, # W) can be made less tha if R < I(X;Y).
scheme for sending linear functions of Gaussian Sourcasove 1 fq|iows from the union bound that the probability that any

Gaussian MAC. We will then show that an appropriate netwotKceiver is in error averaged over all codebooks and message
code over the reals exists for our network. Finally, we will Jiicfies:

show that the desired distortions are achievable. .
IV. ACHIEVABLE RATES FROMJOINT SOURCE-CHANNEL P. < Z |5I'(Wg #W) <e. (12)
SCHEMES =1

In this section, we will show that if we can build a joint Finally, we get that there exists at least one fixed codebook
source-channel code for multicasting Gaussian sourcds witith average probability of errof)., at mostP,, otherwise the



average over all codebooks would not hold. This completes tthe sum of the source&] = S;+ S2+- - -+.5;, at the decoder
proof. B with the lowest possible distortion. Distortion is measlby

the usual mean-squared error criterion:
V. COMPUTATION WITH LATTICES

k
We now state some results on lattices that will be useful 1 72
i : . . Dy= - E[(U; - U; 18
in constructing our network code. The essential fact is that Tk ; (s ] (18)
there exists lattices which are simultaneously good fohbot h “The followind di L hievable f
AWGN channel coding and Gaussian source coding. We will 1 '€0rém 2:The following distortion is achievable for
also show how to construatomputation codegrom these sendlngk sums of i.i.d. Gaussian sources over a Gaussian
lattices to compute sums reliably over a Gaussian MAC. MAC with n = (k, £ € Z. channel uses:

Definition 10: An n-dimensionallattice, A, is a set of N JN -1
points in R™ such that ifx,y € A, thenx +y € A, and Dy = Jog <N+JP §N+JP (19)
if x € A, then—x € A. A lattice can always be written in Proof: We provide a brief description of the scheme
terms of a generator matrg € R™*": here but refer the interested reader to [9] for a full proof. |
A={x=2G:zeZ"} (13) [24], Kochm_an and Zamir develop an elegant jc_)int source-
. channel lattice scheme for sending a Wyner-Ziv Gaussian
whereZ represents the integers. source over a dirty paper channel. Our distributed refinémen

Definition 11: An (n, R) lattice code C, is a code with scheme consists of two main steps. First, we use uncoded
elements taken from the intersection of someimensional transmission to send a noisy sum to the decoder. Then, we have
lattice A, shifted bypc € R", and a convex-dimensional each encoder run a version of the Kochman-Zamir scheme
shapel” (which is usually chosen to meet some type of powesrgeted at the desired suf, Unfortunately, there is a penalty

constraint.) for this form of distributedness. The lattice at each encode
C={A+pcINT (14) results in channel outputs that violate the power corjsttbyn

R a factor of J. Therefore, we must scale down our inputs to

IC| =2 (15)  meet the power constraint and accept the resulting incriease

Definition 12:_A lattice quantizeris a map,Q :_R" — A distortion at the decoder.
that sends a p0|r_1k_, to_the nearest lattice point in Euclidean Assumel = 2. We thus have2k channel uses to convey
distance after shifting it by some constapg, € R™: k sums. We will use the first channel uses for an uncoded
transmission phase. The decoder will then form an MMSE
estimateU of the sumU = S; + --- + S, and use this as
side information for the next phase. Thiis= Q + U where
Q@ is an i.i.d. Gaussian sequence with mdgaand variance

[[x mod A] +y] mod A = [x + y] mod A. 17) Jodxtop-

As lattices have infinite extent (and thus violate the power Choose a sequence of good latticds,, using [22] and
constraint), much effort was focused on finding lattices thacale them such that the normalized second moment of the
when intersected with an n-dimensional ball of radidsP lattice isJP. Letd;,ds, ..., d; be independent dither vectors
centered a6 form a good code. Urbanke and Rimoldi showedrawn uniformly over the fundamental Voronoi regiaty, ~
that such lattices indeed exist in [20]. Further work by Erédnif(V, 1), and made available to the encoders and decoder.
and Zamir has focused on proving that decoding to theEach encoder transmit%xj where:
closest lattice point also achieves capacity [21]. Eretsyin
and Zamir showed in [22] that there exist lattices that are x; = [ys; +d;] mod Ay. (20)
simultaneously good source codes and good channel coddse channel output is given by:

These will be extremely useful in our distributed refinement LA
scheme. R N

We now consider the problem of transmitting the sum of Y \/7; A
Gaussian sources over a Gaussian MAC at the minimal mean-
squared error. This will be the key to using Gaussian MACE};ﬂe decoder then computes:

Xq = Q(x +ps) = argminlx +ps — 1|l (16)
Definition 13: Let [x] mod A = x — Q(x). For all x,y €
R™, the modA operation satisfies:

to compute linear functions. Below we give an achievable . J
scheme, computation coding, for refining the sum over many a=p0 |ay — Zdj +7u mod Ax + G
channel uses. This result originally appeared in [9]. J=1

Each encodeg;, sees an independent identically dlstrlbute%e define the following constantsy — ﬁjﬁv -

(i.i.d.) Gaussian sequenés; [i] }%_, with mean0 and variance
c%. The encoders each face one terminal of a Gaussian MA ?Eif (1 - %) and lety — ~, from below ask — oo.
with equal transmit power® and noise varianceV as in @

Definition 2. For everyk source Symb0|5*_ we are allotted 1In [23], we claimed a slightly lower distortion as achievabWe thank
n = fk channel uses wheree Z, . Our goal is to reconstruct the authors of [15] for pointing out an error in our distortioalculation.



2
We also set3 = Z%7. As k — oo, we get that the achievedof A, o3, = (¢ — 1)%0y, — fjo;. This lattice point is

distortion isD = Jo% 25 x2%5. For all higher values of transmitted and the decoder makes an estimate of the sum
¢, the scheme can be repeated with the final estimate from the+ 7> + --- + T; and removes the common randomness
last refinement taken as side information for the next staye.variables,iW;, j = 1,2,...,.J, to get an estimate of/ at
the desired distortion. Note that as this works in expemtati
VI. AWGN NETWORK CODING over thelV;, there exist fixed constants;, ws,...,w; that
Before we give a full proof of Theorem 1, we will need twaocan serve the same role. [
auxiliary results. First, we show that given a full rank syst ~ Remark 3:Note that the ﬁg term does not appear
of equations over a prime-sized finite field, the same systémthe distortion claimed above. This is because we are not
of linear equations over the reals is also full rank. assuming the sources are i.i.d. so we do not make use of the
Lemma 4:Let F be a field of size; whereq is prime. Let uncoded transmission phase. Due to the dither random vari-
A € F™*™ be a full rank matrix with elements;;. Finally, ables, independence is unnecessary for the sources. Furthe
let A be a matrix inR™*"™ whose elements;;, are the same note that as the dithers work in expectation, there existifixe
as those ofA, a;; = ay;. Then, A is also full rank. constants that can serve the same purpose.

Proof: A matrix is full rank if its determinant is non-zero. We are now ready to prove our main theorem. The proof will
One way to express the determinant is through the Leibmizroceed in several steps. First, we reduce our original owtw
formula. For a matrix oveF, this is to a point-to-point channel network. We will then find a set of

m channel codes and an algebraic network code using Lemma
_ o 2 to achieve the multicast capacity of this virtual network.
det(4) ( 2_ S90) HC%@)) mod ¢ @) Finally, we will show how to map this overall code onto the
_ ) original network, especially the MACs.
where Sy, is the set of all permutations ofl1,2,...,m}, Proof: [Theorem 1] Choose to be a prime number such
sgn(o) is sign of a permutation, and the sum and produg{at, > I whereL is the number of receivers. We will use the
are over the reals but are mapped back ifitby the modulo  channel networke = km/ times to convey Gaussian sources
operation. Recall that the sign of a permutation is théit  f |ength %. We will then connect the distortion performance

takes an even number of switches to get frfm2,...,m}  pack to sending bits using Lemma 3. Construct a new point-to-
to the permutationr and —1 otherwise. The determinant of yoint channel network using’ = (V',€') as in the statement

c€ESm i=1

the same matrix over the reals is of the theorem. LeC’ be the multicast capacity of thg’
- m which is given by the usual max-flow min-cut characterizatio
det(A) = Z sgno) Haw(i)- (22)  we would like to show that for any, ¢ > 0, we can achieve
oESm i=1 a multicast rateR = C’ — § on the original network with

Clearly, det(A) # 0 implies thatdet(A) # 0 since average probability of error not exceeding
b mod ¢ # 0 is a stronger requirement than 0. First, using Lemma 2, find an algebraic network codedor

. _ 5 . . .
Finally, we need to show that giveh Gaussian sources atthat achleves_ ratg = C'—3. Reca!l that this mvolve_s preatlng
each terminal of a MAC, we can refine a linear function ofét another virtual networkge, this time one consisting only

these sources at the same rate that is available for refining_':a/\ rate pipes for some appropriately chosgnEach of
sum of J i.i.d. Gaussian sources. ese) rate bit pipes is designated to carry exactly one linear
Lemma 5:Let Sy, S, S, be Gaussian sources Withfunction. To see how these functions map to both the new

varianceso?, o2, ..., o> respectively. Lets?,, = max; 072-. pomt_-to-pomtnetwork and the o_rlgmal network, recakthve
Each source is seen at one encoder with paivevhich faces can just look at each channel in terms of chunks of channel
uses. For instance, for a chaneet £’ with capacityC., we

a Gaussian MAC with noise variancé. Let ¢ be a positive c C o1
prime number and 167 = 3,51 + 3255 + - - + 3,5, where Usel | 5| chunks of length(| = |) ~mk. We assume that
8; € {0,1,2,....,q — 1}. Then givenk vectors of source the blocklengths are large enough so that any loss in chunk

symbols and: channel uses where = k¢, the decoder can 2SSignment due to rounding error is negligible.

make an estimate df at distortion Let Py, N\ > 0 be chosen such that= 1log (1 + %)
/ For each? chunks of channel uses, each node must send out
Dy = J(ag —1)%02 (23) exactly one function of its inputs. The number of inputs is
£ (q ) Onax . . .
N+ P clearly upper bounded by the number of edges in the virtual

Proof: The bulk o_f the work is done by Theorem 2, pipe network which itself is upper bounded by:
To send a linear function, we choose a lattide, for use

in refining a sum with Theorem 2 as if all the sources |Evpred = (max {%J) 1€ (24)
had variance(q — 1)?02,,. At each terminal, we quantize ecf | A

T; = (3;8; + W; onto the latticeA where W; is an i.i.d. which is a constant that does not dependnon

Gaussian random variable available as common randomnesBach node is thus sent a finite number of functions,
to both the encoder and the decoder. Its variance is chogéh UL, ..., U%. Assume that each of these have variance at
such that the variance @f; is matched to the design variancenost o7,. It makes MMSE estimates of these and prepares



a new function,V = piU; + BUs + --- + B;U; with  MAC. This allows us to eliminate the penalty incurred by
B; € {0,1,...,q — 1} for each outgoing chunk of channelincreasing function variances over many refinements. We now
uses according to the algebraic network code. This functishow that if the noise variance of every channel is the same
can be transmitted to the receiver with distortion at worst: and no receiver directly views the output of a MAC, then

N / the achievable scheme coincides with the max-flow min-cut
A
Dy = |Evpred (@ — 1)%0% (ﬁ) . (25) bound. _ _

PR ) We can generalize the statement of our main theorem to

according to Lemma 5. Note that this holds whether the nodelude MACs with unequal power per user. Essentially, we
in the new network is an actual node in the original network @an use a rate splitting approach to create several compu-
a MAC. Thus, the processing at a node increases the distortiational units from the original MAC, each with a different
by at most a factofEyeeer| (¢ — 1)2. connectivity. For instance, take the minimum input powegrov
Compute the multicast capacity;me Of Gope. Let v = all users. We can then take that much power from each user
CPT'F’E and note thaty is an integer due to the constructo create a processing node with output rate corresponding
tion of G..e.At the source we will createy i.i.d. Gaussian to that power. The codewords generated from this can be
sourcesSY, S5,..., 5% of length k and variancel. These treated as noise for the next stage which repeats this @oces
will be relayed to the receivers by means of the algebraigth one user removed and all powers suitably reduced. This
network code and the coding method described above. Tgiges a new type of multiple-access region between difteren
receiver will see functions of these original sources atesonsomputations at different SNRs.
distortions. First note that the distortions will not exdee A closer examination of the proof shows that the main
(IVn] + [Vanc)[Ewred (¢ — 1)2. This is just the number of fact is the rate at which the linear function is refined over
processing nodes multiplied by the maximum increase facttie Gaussian MAC. This is well-represented by the linear
due to processing at one node. processing rate which is defined below.
The functions of the sources seen at the decoders carPefinition 14: Thelinear processing rateR; p, for a Gaus-
be written as a matrix transformation just as the originalan MAC is given by:
algebraic network code description. If the algebraic nekwo 1 o2
code induces a transforfd overF on the sources to a given Rrp = Zlilgo Y] log (Fs> (32)
receiver then the transform for Gaussian case is giverby ) . . ) ¢ , )
which has the same entries Asbut operations are over thewhere D, is the dls_tortlon of a linear function of Gaussian
reals. Since we assum is full rank thenA is full rank as Sources at the receiver aftérefinements. _
well by Lemma 4. Thus, we can solve for each original sourdgiS rate is directly connected to the rate at which we can
at every receiver at distortion “compute-and-forward” messages. Thus, improving the_ rate
at which a sum of Gaussian sources can be refined with an
N, ¢ increasing number of channel uses on a Gaussian MAC will
Dy=a (m) (26)  result in a higher achievable multicast rate for an AWGN
2 2 network.
a =7 ([Vn] + [Vanc|)|Euered (g — 1)°. (27) Overall, we have shown that with the appropriate tools
Finally, we invoke Lemma 3 to get a multicast rate fromve can exploit the additive function of a Gaussian MAC to
these distortions. We get that we can achieve any multicastmpute functions as part of a network code. This approach

rate satisfying: can be superior to a separation-based approach which decode
all incoming messages rather than just a function of them.
Y Ny + P
R< g;log | a N (28) VIl. BUTTERFLY
p Consider the AWGN channel network in Figure 1 (a). Each
=2 log (1 + _’\) — lloga (29) vertex on the graph represents a decoder/encoder pair. The
2 Nx 2¢ sender is at the top of the graph and the two receivers are
=9\ - lgloga (30) at the bottom. All encoders must satisfy an average power
2 ~ constraint, 2 >°" | z;[i]> < P. The Z,,,, m =1,2,...,7 are
= Core— 5 loga (31) drawn i.i.d. according to a Gaussian distribution with méan

and varianceV. This is just the butterfly network considered
in [1] except that we have placed a Gaussian MAC in the
center.
Lemma 6: The following multicast rate is achievable for the
nnel network in Figure 1(a) is:

Choos¢ large enough such that we can achigve- Cppe— %
Recall that by constructioye: > C — g Thus, we can
achieve a rateR = C — § as desired. By making all
the appropriate blocklengths large enough, we can make
probability of error arbitrarily small. This completes theof.

1 P 1 1 P

u Riar==log(1+ — ) +max(0,=log| =+ —

Although the proof is somewhat involved, the key fact 2 N 2 2 N
is that we can refine functions at a certain rate over a



The proof is just an application of Theorem 1. The achiethe equations seen at each receiver could then determine the

able rate for a separation-based scheme is given by: rate transmitted to it.
1 P 1 2P
Rpr = = log (1 + —) + - log (1 + —) (34) REFERENCES
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