Reliable Computation over Multiple-Access Channels

Bobak Nazer Michael Gastpar

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

September 28, 2005

Allerton 2005
Outline

1. Motivation
2. Problem Statement and Background
3. Motivating Example
4. Discrete Linear MACs
5. Conclusions
Sensor Networks and The Separation Theorem

- Typical sensor network problem: collect data at sensors and communicate the average to a central node
- Typical solution: distributed compression + multiple-access channel (MAC) protocol
- Motivated by Shannon’s Separation Theorem: for point-to-point communication, compression can be separated from reliable communication
- This does not apply in general for networks.
- What about sending functions over channels? (ex: sums)
Problem Statement

- **M** users each observe a source
- We want to reliably send a function of the sources, \(U = f(S_1, S_2, \ldots, S_M) \) to a receiver, \(P(\hat{U} \neq U) \rightarrow 0 \)
- We measure our performance by the *computation rate*, \(\kappa = \) number of functions that get sent per channel use
- Is there a separation theorem for sending functions?
A Summation Channel

S_1 and S_2 are independent $B(\frac{1}{2})$ sources. Want to sent $U = S_1 \oplus S_2$ over this channel:
S_1 and S_2 are independent $\mathcal{B}(\frac{1}{2})$ sources. Want to sent $U = S_1 \oplus S_2$ over this channel:

Uncoded

$\kappa_{\text{COMP}} = 1$
A Summation Channel

S_1 and S_2 are independent $\mathcal{B}(\frac{1}{2})$ sources.
Want to send $U = S_1 \oplus S_2$ over this channel:

Uncoded

\[
\begin{align*}
S_1 \\
& \quad \downarrow \\
& \quad \downarrow \\
& \quad \oplus \\
& \quad S_1 \oplus S_2 \\
S_2 \\
\end{align*}
\]

Separation

\[
\begin{align*}
S_1 \\
& \quad \downarrow \\
& \quad \downarrow \\
& \quad \oplus \\
& \quad S_1
\end{align*}
\]

\[
\kappa_{\text{COMP}} = 1
\]
S_1 and S_2 are independent $\mathcal{B}(\frac{1}{2})$ sources.
Want to sent $U = S_1 \oplus S_2$ over this channel:

Uncoded

Separation

$\kappa_{\text{COMP}} = 1$

$\kappa_{\text{SEP}} = \frac{1}{2}$
A Summation Channel

- We want to develop schemes that take advantage of the channel structure.
- Problem: How can we send functions reliably?
- Uncoded transmission will boost our performance at the cost of noise in the received signal.
- Can we get these gains and communicate losslessly?
- First, some background on separation.
Standard Multiple-Access Problem

- M users with independent messages, $W_i \in \{1, \ldots, 2^{nR_i}\}$
- Encoders possibly subject to cost constraints
- Capacity region completely known [Ahlswede 71, Liao 72]
Standard Multiple-Access Problem

- **M** users with possibly correlated sources, \(S_i \);
- Must perfectly recover the sources
- Source encoders do distributed compression
Correlated sources, want each source perfectly

Distributed compression rate region was completely characterized by Slepian and Wolf

Separation: combine Slepian-Wolf source coding with MAC coding

Is this optimal?
Standard Multiple-Access Problem

\[P(U, V) \]

\[
\begin{array}{c|c|c}
0 & 1/3 & 1/3 \\
\hline
0 & 1/3 & 1/3 \\
\hline
1 & 0 & 1/3 \\
\end{array}
\]

- Example from [Cover-El Gamal-Salehi 80]
- \(X_1, X_2 = \{0, 1\}, Y = X_1 + X_2, \mathcal{Y} = \{0, 1, 2\} \)
- distributed compression requires \(H(U, V) = \log_2 3 \) bits = 1.58 bits
- \(C_{MAC} = 1.5 \) bits, so separation fails
- \(X_1 = U, X_2 = V \) is perfectly decodable
- Separation not optimal for dependent sources
Motivating Example

\[
P(S_1, S_2)
\]

\[
\begin{array}{c|cc}
 & 0 & 1 \\
\hline
S_1 & 1-p/2 & p/2 \\
S_2 & p/2 & 1-p/2 \\
\end{array}
\]

\[U = S_1 \oplus S_2, \quad H(U) = h_B(p)\]

- Must losslessly transmit the mod-2 sum, \(U = S_1 \oplus S_2\), across a MAC
- Sources have uniform marginals, independent when \(p = \frac{1}{2}\)
- \(S_2\) looks like \(S_1\) passed through a BSC
Naive Source Coding: Slepian-Wolf

- Let’s find the optimal separation scheme. Optimize source coding scheme first.
- Slepian-Wolf binning can be used to compress S_1 and S_2.

\[
R_1 > h_B(p) \\
R_2 > h_B(p) \\
R_1 + R_2 > 1 + h_B(p)
\]

- If the above constraints are satisfied, the source decoder can losslessly recover S_1 and S_2 and compute U.
- Not optimal! Wastefully sent the sources, S_1 and S_2, while only reconstructing the sum, U.
Then what is the optimal source code?

Idea: use a linear source code.

Any iid $B(p)$ source can be compressed to the entropy rate, $h_B(p)$, with a linear code.

This code can be written as a matrix H

\[u = [U(1)U(2)\cdots U(k)] \]

\[w = uH \]

Example: \([1 0] = [1 0 0] \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \]
Now use this source coding matrix at both terminals

\[w_1 = s_1H \]
\[w_2 = s_2H \]

\[w_1 \text{ and } w_2 \text{ are provided to the decoder. Neither source can be reconstructed but } U \text{ comes through perfectly by decoding from the mod-2 sum of the compressed bits} \]
\[w = w_1 \oplus w_2 = (s_1 \oplus s_2)H = uH \]

Körner-Marton scheme achieves:

\[R_1 > h_B(p) \]
\[R_2 > h_B(p) \]
Converse: S_1 and U must be perfectly reconstructed at the decoder. S_2 is available at the decoder so recovering one variable gives the other for free. A rate of at least $H(U) = h_B(p)$ is needed.

$$R_1 + R_U \geq h_B(p)$$

$$R_2 + R_U \geq h_B(p)$$

Set $R_U = 0$.

If S_1 and S_2 are independent, $R_1 \geq 1$, $R_2 \geq 1$ required.

Independence \Rightarrow Slepian-Wolf and Körner-Marton are equivalent
Channel takes a mod-2 sum of the inputs: $Y = X_1 \oplus X_2$

- This is followed by a BSC with crossover probability q
- Sum rate capacity, $C_{MAC} = 1 - h_B(q)$
- Capacity region is a simplex, time-sharing is optimal
Recall performance metric: *computation rate*, $\kappa = \text{number of } U\text{'s (functions) sent per channel symbol}$

Lower bound: Send each source individually over the MAC. Gives $\kappa = \frac{1-h_B(q)}{2}$.

Upper bound: joint encoder. Gives $\kappa = \frac{1-h_B(q)}{h_B(p)}$.

How well does separation do?
Separation-Based Scheme

- Use Körner-Marton scheme to compress U:
 \[R_{S_1} + R_{S_2} > 2h_B(p) \]

- Then use a MAC channel code:
 \[R_{X_1} + R_{X_2} < 1 - h_B(q) \]

- Achieves any computation rate satisfying:
 \[\kappa_{SEP} < \frac{1 - h_B(q)}{2h_B(p)} \]

- Can we do better?
Linear Channel Code for the BSC

- Random coding does not take advantage of the channel structure
- We need a linear channel code and a linear source code
- For any BSC, there is a linear channel code that can achieve capacity.
- Any linear channel code can be written as a generator matrix: G

$$x = wG$$

- Example: $[1 \ 1 \ 0] = [1 \ 1] \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$
There exists a linear code that can approach the computation rate \(\kappa = \frac{1 - h_B(q)}{h_B(p)} \). This is the best available computation rate for lossless transmission of \(U = S_1 \oplus S_2 \) over this channel.

- **Achievability.** Choose \(G \) for the BSC and \(H \) for compressing \(U \) to entropy. Set

 \[
 x_1 = s_1 HG \\
 x_2 = s_2 HG
 \]

- After the channel, it looks as if \(U \) was jointly encoded.

- **Converse.** Relax to joint encoding of \(U \). By the data processing inequality, \(I(U; \hat{U}) \leq I(X_1, X_2; Y) \).
Our scheme dominates separation by a factor of 2, even when the sources are independent.

We can get the benefits of uncoded transmission and maintain reliable communication.
Computation Codes: Desired Properties

- Idea: we can very efficiently send functions close to the "natural function" of a MAC.
- Channel is a function followed by noise.
- U is the same function of the sources.
After the channel function, output looks like a codebook for joint encoding of U for a point-to-point channel.

- Purely random codes do not work. We need structure (ex: linear codes).
- Codebooks may not be valid for recovering individual sources even before noise.
- Let’s consider channels that sum.
Discrete Linear Multiple-Access Channels

- $S_i \in \mathcal{X}$ where \mathcal{X} is a Galois field, $i \in \{1, \ldots, M\}$
- M block encoders, f_i, and a block decoder, g
- $W = \sum_{i=1}^{M} \beta_i S_i$ where $\beta_i \in \mathcal{X} \setminus \{0\}$
Would like to losslessly communicate U_1, U_2, \ldots, U_J

$$U_j = \sum_{i=1}^{M} \alpha_{ji} S_i \quad \alpha_{ji} \in \mathcal{X}, \quad j = 1, 2, \ldots, J$$

U_1, U_2, \ldots, U_J can be correlated
Theorem

There is a linear code that can approach the rate
\[
\kappa = \frac{C_{\text{MAC}}}{H(U_1, U_2, \ldots, U_J)}.
\]
This is the maximum computation rate for lossless transmission of \(U_1, U_2, \ldots, U_J\) over a symmetric discrete linear MAC.

Converse. Relax to joint encoding of \(U = (U_1, U_2, \ldots, U_J)\). By the data processing inequality, \(I(U; \hat{U}) \leq I(X_1, X_2, \ldots, X_M; Y)\).

\[
\min_{p(\hat{U}|U)} I(U; \hat{U}) = H(U_1, U_2, \ldots, U_J)
\]
Any source can be compressed to its entropy rate with a linear code over a Galois field.

This linear code can be written as a matrix \mathbf{H}.

For any symmetric DMC whose input alphabet is a Galois field, there is a linear code that achieves capacity.

This linear code can be written as a generator matrix \mathbf{G}.
Computation Coding: Achievability

- **Coding scheme**

 \[
 A_i = \begin{bmatrix}
 \alpha_{1i}^k \times 1 \\
 \vdots \\
 0 \\
 \alpha_{2i}^k \times 2 \\
 \vdots \\
 \alpha_{Ji}^k \times J
 \end{bmatrix}
 \]

- Choose **H** for joint compression of \((U_1, U_2, \ldots, U_J)\)
- Choose **G** for achieving capacity over the symmetric DMC
- Set \(B_i = \beta_i^{-1} \times n \times n\)
- \(x_i = A_i s_i H G B_i\)
- \(s_i = [(S[1] S[2] \ldots S[k])]\)
Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MACs

Conclusions

Corollary

The rate $\kappa = \frac{I(W;Y)}{H(U_1, U_2, \ldots, U_J)}$ where $p(W)$ is uniform is achievable over any discrete linear MAC.

- Linear codes result in a uniform input distribution to the channel.
- Completely linear codes can get us very high (and sometimes optimal) performance. How does separation do?
Separation over Discrete Linear MACs

- Körner-Marton scheme does not generalize

- **Example**: Let S_1 and S_2 be independent random variables on $\text{GF}(3)$ with mod-3 sum $U = S_1 \oplus S_2$. Their pdfs are given by the following table:

<table>
<thead>
<tr>
<th>V</th>
<th>$P(S_1 = V)$</th>
<th>$P(S_2 = V)$</th>
<th>$P(U = V)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0.25</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

- $H(S_1) = H(S_2) = 1$ and $H(U) = 1.5$

- In this case, sending sources makes more sense

- No converse though
We can’t give the separation scheme in general.

Still for most situations of interest our scheme achieves a computation rate, κ, M times larger than separation-based schemes.

Our rate gain is proportional to the number of users.

This suggests that even in mismatched cases, large gains are possible.

Cost of maintaining synchronization is worthwhile.
Unmatched Channels

- Ideally, want to optimally transmit any function over any channel. This is hard.
- Example: S_1 and S_2 independent $\mathcal{B}(\frac{1}{2})$ processes. Want to send $U = S_1 \oplus S_2$. Channel is a real addition, $W = S_1 + S_2$, followed by symmetric noise.

$$P_{Y|W} = \begin{pmatrix} 1 - 2\epsilon & \epsilon & \epsilon \\ \epsilon & 1 - 2\epsilon & \epsilon \\ \epsilon & \epsilon & 1 - 2\epsilon \end{pmatrix}$$

- $\epsilon = 0.1$ gives $\kappa_{SEP} = 0.3104$.
- Interpreting 2 as 0 at the channel output, we can achieve $\kappa_{COMP} = 0.3973$.

Future Work

- Linear codes for sending sums over the Gaussian MAC
- Bounds for sending mismatched functions over channels
Large gains are possible for reliable computation with joint source-channel codes.

Very simple codes, such as linear codes can completely achieve these gains.

Even mismatched functions can benefit.
We would like to thank Anand Sarwate and Krish Eswaran for helpful discussions.